ORGANIC
LETTERS
2004
Vol. 6, No. 2
181-184
Efficient Modulation of
Hydrogen-Bonding Interactions by
Remote Substituents
Sung-Youn Chang, Hung Sop Kim, Kyoung-Jin Chang, and Kyu-Sung Jeong*
Center for BioactiVe Molecular Hybrids and Department of Chemistry,
Yonsei UniVersity, Seoul 120-749, S. Korea
Received October 7, 2003
ABSTRACT
A series of tetralactam macrocycles having different substituents were prepared, and their binding affinities for an adipamide guest were
investigated in CDCl3 by 1H NMR titrations. The association constants strongly depend on the substituents, varying up to ∆∆G ) 3.4 kcal/
mol; electron-donating substituents (OMe, NMe2) decrease the binding affinity, while electron-withdrawing groups (Cl, NO ) increase it. These
2
large substituent effects have been rationalized by secondary repulsions and partial perturbations of intramolecular hydrogen bonds.
A large variety of molecular motifs1 have been developed
and utilized over the last two decades to understand
hydrogen-bonding interactions. Studies with these motifs
have revealed that the stability of the complex depends not
only on the number and type of the hydrogen bond but also
on the arrangement of hydrogen-bonding donor and acceptor
atoms. Furthermore, the strength of the hydrogen bonds can
be conveniently modulated in several ways,1,2 especially by
electrochemical oxidation and reduction as nicely demon-
strated by Rotello.2
such as rotaxanes and pseudorotaxanes.3 In the course of
our own studies with the tetralactam macrocycles derived
from pyridine-2,6-dicarboxamide scaffold,4 we found that
the affinities for dicarbonyl compounds were highly sensitive
to the substituents at the para position of the pyridine rings.
To carry out more systematic studies on the substituent
effects, eight mono- and bis-substituted tetralactam macro-
cycles 2a-d and 3a-d bearing either electron-donating groups
(3) (a) Vo¨gtle, F.; Du¨nnwald, T.; Schmidt, T. Acc. Chem. Res. 1996,
29, 451-460. (b) Schalley, C. A.; Beizai, K.; Vo¨gtle, F. Acc. Chem. Res.
2001, 34, 465-476. (c) Gatti, F. G.; Leigh, D. A.; Nepogodiev, S. A.;
Slawin, A. M. Z. Teat, S. J.; Wong, J. K. Y. J. Am. Chem. Soc. 2001, 123,
5983-5989. (d) Leigh, D. A.; Wong, J. K. Y.; Dehez, F.; Zerbetto, F. Nature
2003, 424, 174-179. (e) Altieri, A.; Gatti, F. G.; Kay, E. R.; Leigh, D. A.;
Martel, D.; Paolucci, F.; Slawin, A. M. Z.; Wong, J. K. Y. J. Am. Chem.
Soc. 2003, 125, 8644-8654 and references are therein.
(4) (a) Jeong, K.-S.; Cho, Y. L.; Song, J. U.; Chang, H.-Y.; Choi, M.-G.
J. Am. Chem. Soc. 1998, 120, 10982-10983. (b) Jeong, K.-S.; Cho, Y. L.;
Chang, S.-Y.; Park, T.-Y.; Song, J. U. J. Org. Chem. 1999, 64, 9459-
9466. (c) Jeong, K.-S.; Choi, J. S.; Chang, S.-Y.; Chang, H.-Y. Angew.
Chem., Int. Ed. 2000, 39, 1692-1695. (d) Chang, S.-Y.; Jang, H.-Y.; Jeong,
K.-S. Chem. Eur. J. 2003, 9, 1535-1541. (e) Jeong, K.-S.; Chang, K.-J.;
An, Y.-J. Chem. Commun. 2003, 1450-1451. (f) Chang, S.-Y.; Um, M.-
C.; Uh, H.; Jang, H.-Y. Chem. Commun. 2003, 2026-2027.
Tetralactam macrocycles have been widely used as the
ring component for the synthesis of interlocked molecules
(1) For recent reviews, see: (a) Zimmerman, S. C.; Corbin, P. S. Struct.
Bonding 2000, 96, 63-94. (b) Prins, L. J.; Reinhoudt, D. N.; Timmerman,
P. Angew. Chem., Int. Ed. 2001, 40, 2382-2426. (c) Archer, E. A.; Gong,
H.; Krische, M. J. Tetrahedron 2001, 57, 1139-1159. (d) Sherrington, D.
C.; Kirsti, A. T. Chem. Soc. ReV. 2001, 30, 83-93. (e) Schmuck, C.;
Wienand, W. Angew. Chem., Int. Ed. 2001, 40, 4363-4369. (f) Sijbesma,
R. P.; Meijer, E. W. Chem. Commun. 2003, 5-16.
(2) For reviews, see: (a) Niemz, A.; Rotello, V. M. Acc. Chem. Res.
1999, 32, 44-52. (b) Tucker, J. H. R.; Collinson, S. R. Chem. Soc. ReV.
2002, 31, 147-156. (c) Cooke, G.; Rotello, V. M. Chem. Soc. ReV. 2002,
31, 275-286.
10.1021/ol035954j CCC: $27.50 © 2004 American Chemical Society
Published on Web 12/17/2003