C O M M U N I C A T I O N S
ized. We succeeded in the structural determination of the π-allyl-
rhodium intermediate to establish the catalytic cycle of the reaction.
Acknowledgment. This work has been supported in part by a
Grant-in-Aid for Scientific Research, the Ministry of Education,
Culture, Sports, Science and Technology, Japan (Priority Areas
“Advanced Molecular Transformations of Carbon Resources”).
Supporting Information Available: Experimental procedures and
spectroscopic and analytical data for the substrates and products (PDF)
and X-ray data files (CIF). This material is available free of charge via
References
(1) (a) Hayashi, T.; Yamasaki, K. Chem. ReV. 2003, 103, 2829. (b) Hayashi,
T Bull. Chem. Soc. Jpn. 2004, 77, 13. (c) Hayashi, T. Pure Appl. Chem.
2004, 76, 465. (d) Darses, S.; Genet, J.-P. Eur. J. Org. Chem. 2003, 4313.
(e) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169. (f) Takaya, Y.;
Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc.
1998, 120, 5579.
Figure 1. ORTEP illustration of η3-allylrhodium(I) complex 14 with
thermal ellipsoids drawn at 50% probability (hydrogens are omitted).
Scheme 2
(2) For recent representative examples of rhodium-catalyzed asymmetric 1,4-
addition of arylboronic acids, see: (a) Hayashi, T.; Ueyama, K.; Tokunaga,
N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508. (b) Shintani, R.;
Okamoto, K.; Hayashi, T. Org. Lett. 2005, 7, 4757. (c) Kuriyama, M.;
Nagai, K.; Yamada, K.-i.; Miwa, Y.; Taga, T.; Tomioka, K. J. Am. Chem.
Soc. 2002, 124, 8932. (d) Itooka, R.; Iguchi, Y.; Miyaura, N. J. Org. Chem.
2003, 68, 6000. (e) Duursma, A.; Boiteau, J.-G.; Lefort, L.; Boogers, J.
A. F.; de Vries, A. H. M.; de Vries, J. G.; Minnaard, A. J.; Feringa, B. L.
J. Org. Chem. 2004, 69, 8045. (f) Ma, Y.; Song, C.; Ma, C.; Sun, Z.;
Chai, Q.; Andrus, M. B. Angew. Chem., Int. Ed. 2003, 42, 5871. (g) Belyk,
K. M.; Beguin, C. D.; Palucki, M.; Grinberg, N.; DaSilva, J.; Askin, D.;
Yasuda, N. Tetrahedron Lett. 2004, 45, 3265. (h) Mauleo´n, P.; Carretero,
J. C. Org. Lett. 2004, 6, 3195. (i) Paquin, J.-F.; Defieber, C.; Stephenson,
C. R. J.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 10850.
(3) (a) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. ReV.
2000, 100, 3067. (b) Ma, S. Chem. ReV. 2005, 105, 2829.
(4) For rhodium-catalyzed asymmetric arylation of activated alkenes via
enantioselective protonation, see: (a) Reetz, M. T.; Moulin, D.; Gosberg,
A. Org. Lett. 2001, 3, 4083. (b) Chapman, C. J.; Wadsworth, K. J.; Frost,
C. G. J. Organomet. Chem. 2003, 680, 206. (c) Moss, R. J.; Wadsworth,
K. J.; Chapman, C. J.; Frost, C. G. Chem. Commun. 2004, 1984. (d)
Navarre, L.; Darses, S.; Genet, J.-P. Angew. Chem., Int. Ed. 2004, 43,
719. (e) Sibi, M. P.; Tadamidani, H.; Patil, K. Org. Lett. 2005, 7, 2571.
(5) For palladium-catalyzed asymmetric addition of Meldrum acids and
azlactones to allenes, see: (a) Trost, B. M.; Ja¨kel, C.; Plietker, B. J. Am.
Chem. Soc. 2003, 125, 4438. For palladium-catalyzed enantioselective
hetero- and carboannulation involving allenes, see: (b) Larock, R. C.;
Zenner, J. M. J. Org. Chem. 1995, 60, 482. (c) Zenner, J. M.; Larock, R.
C. J. Org. Chem. 1999, 64, 7312. (d) Hiroi, K.; Kato, F.; Yamagata, A.
Chem. Lett. 1998, 397. (e) Hiroi, K.; Hiratsuka, Y.; Watanabe, K.; Abe,
I.; Kato, F.; Hiroi, M. Tetrahedron: Asymmetry 2002, 13, 1351. (f) Kato,
F.; Hiroi, K. Chem. Pharm. Bull. 2004, 52, 95. (g) Ma, S.; Shi, Z.; Wu,
S. Tetrahedron: Asymmetry 2001, 12, 193.
(6) Palladium-catalyzed addition of arylboronic acids to allenes: (a) Oh, C.
H.; Ahn, T. W.; Reddy, R. V. Chem. Commun. 2003, 2622. (b) Gupta, A.
K.; Rhim, C. Y.; Oh, C. H. Tetrahedron Lett. 2005, 46, 2247. (c) Ma, S.;
Jiao, N.; Ye, L. Chem.sEur. J. 2003, 9, 6049. (d) Yoshida, M.; Gotou,
T.; Ihara, M. Chem. Commun. 2004, 1124. (e) Hopkins, C. D.; Malinakova,
H. C. Org. Lett. 2004, 6, 2221. (f) Hopkins, C. D.; Guan, L.; Malinakova,
H. C. J. Org. Chem. 2005, 70, 6848.
(7) (a) Boisselle, A. P.; Meinhardt, N. A. J. Org. Chem. 1962, 27, 1828. For
representative examples involving carbometalation to phosphinylallenes,
see: (b) Rubin, M.; Markov, J.; Chuprakov, S.; Wink, D. J.; Gevorgyan,
V. J. Org. Chem. 2003, 68, 6251. (c) Berlan, J.; Battioni, J.-P.; Koosha,
K. Tetrahedron Lett. 1976, 3351.
(8) For representative examples of the synthesis of chiral allylic phosphine
oxides, see: (a) Liron, F.; Knochel, P. Chem. Commun. 2004, 304. (b)
Demay, S.; Harms, K.; Knochel, P. Tetrahedron Lett. 1999, 40, 4981.
(9) Sadow, A. D.; Haller, I.; Fadini, L.; Togni, A. J. Am. Chem. Soc. 2004,
126, 14704.
NMR studies on a sequence of stoichiometric reactions starting
from phenylrhodium complex [RhPh(PPh3)((R)-binap)]10 (13)
(Scheme 2) provided us with a significant insight into the catalytic
cycle of the present reaction. Treatment of 13 with 1 (1.0 equiv) in
THF-d8 at 60 °C for 30 min brought about selective formation of
a new rhodium complex. 31P NMR of the reaction mixture consisted
of two dd’s, 34.9 (JP-P ) 13, JRh-P ) 3 Hz), 46.9 (JRh-P ) 198
Hz, JP-P ) 35 Hz), and one ddd 38.4 (JRh-P ) 197 Hz, JP-P ) 35,
13 Hz) as well as a peak of free PPh3, which is consistent with
formation of π-allylrhodium complex 14. The structure of 14 was
successfully determined by X-ray crystallographic analysis.12 As
shown in Figure 1, two phosphorus atoms (P(2), P(3)) of (R)-binap
and π-allyl carbons (C(1), C(3)) constitute square planar orientation
around the Rh center. The diphenylphosphinyl substituent on the
π-allyl is located anti with respect to the phenyl group on the central
carbon C(2). This orientation is probably due to the steric effect
by one of the phenyl rings of the binap ligand. The absolute
configuration of the π-allyl moiety in 14 is 2R,3R. Addition of
phenylboronic acid (2.0 equiv) to the THF-d8 solution containing
14 and PPh3 gave, after heating at 60 °C for 30 min, hydrophe-
nylation product 2c and phenylrhodium complex 13. The isolated
2c (93% yield) was an S isomer of 96% ee, which is the same as
that obtained in the catalytic reaction.
Thus, we succeeded in establishing the catalytic cycle which
involves the addition of an arylrhodium species to allene, forming
a π-allylrhodium species, and protonolysis13 of the π-allylrhodium,
giving hydroarylation product, followed by transmetalation, regen-
erating the arylrhodium intermediate. The same stereochemical
outcome (96% ee S) observed in the catalytic reaction and the
stoichiometric reaction imply that the protonation in the catalytic
system occurs after the equilibration into a thermodynamically stable
π-allylrhodium intermediate (such as 14), and the R configuration
at C(3) of the π-allyl complex 14 indicates that the π-allyl undergoes
protonation from the same side as rhodium, although the detailed
mechanism of the protonation remains to be clarified.14
(10) Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem.
Soc. 2002, 124, 5052.
(11) The Flack parameter is -0.03(5) with this configuration: Flack, H. D.
Acta Crystallogr., Sect. A 1983, 39, 876.
(12) For examples of the synthesis of π-allylrhodium(I) complexes from
rhodium complexes and allenes, see: (a) Osakada, K.; Choi, J.-C.;
Yamamoto, T. J. Am. Chem. Soc. 1997, 119, 12390. (b) Choi, J.-C.;
Osakada, K.; Yamamoto, T. Organometallics 1998, 17, 3044.
(13) The arylation of 1 with p-tolylboroxine in the presence of D2O gave (2-
deuterio-3-p-tolylbut-3-en-2-yl)diphenylphosphine oxide 2a(D) (82% D)
in 91% yield.
(14) A diphenylphosphinyl group may play an important role in the hydroary-
lation of allenes to obtain the desired adduct selectively. For example,
the reaction of 1-methyl-1-(trimethylsilyl)allene with p-tolylboronic acid
did not give the desired product at all under the same reaction conditions.
In summary, highly enantioselective hydroarylation (up to 98%
ee) of diphenylphosphinylallenes with arylboronic acids was real-
JA058763F
9
J. AM. CHEM. SOC. VOL. 128, NO. 8, 2006 2557