Journal of the American Chemical Society
Page 4 of 5
Based on previous literature reports19 and our experimental re-
sults, a tentative reaction mechanism is suggested as shown in
Scheme 4. Alkyne and azide coordinate to Ni, forming intermedi-
ate A, while the spectator ligands (Cp and/or Xantphos) may
change their bonding modes to accommodate the new ligands.
Because both internal and terminal alkynes participate in this
cycloaddition (vide supra, see Scheme 2), the formation of a nick-
el-acetylide species is excluded. The C–N bond formation be-
tween alkyne and azide giving complex B determines 1,5-
regioselectivity, analogous to the RuAAC pathway.7b Subsequent
reductive elimination leads to the formation of cyclized target
product 3, while regenerating NiLn through association (or change
of bonding mode) of the spectator ligands.
(4) (a) Tiwari, V. K.; Mishra, B. B.; Mishra, K. B.; Mishra, N.; Singh, A.
S.; Chen, X. Chem. Rev. 2016, 116, 3086. (b) Kim, W. G.; Choi, B.; Yang,
H.-J.; Han, J.-A.; Jung, H.; Cho, H.; Kang, S.; Hong, S. Y. Bioconj. Chem.
2016, 27, 2007. (c) Zhou, Q.; Gui, J.; Pan, C.-M.; Albone, E.; Cheng, X.;
Suh, E. M.; Grasso, L.; Ishihara, Y.; Baran, P. S. J. Am. Chem. Soc. 2013,
135, 12994. (d) Besanceney-Webler, C.; Jiang, H.; Zheng, T.; Feng, L.;
Soriano del Amo, D.; Wang, W.; Klivansky, L. M.; Marlow, F. L.; Liu, Y.;
Wu, P. Angew. Chem., Int. Ed. 2011, 50, 8051. (e) Hong, S. Y.; Tobias, G.;
Al-Jamal, K. T.; Ballesteros, B.; Ali-Boucetta, H.; Lozano-Perez, S.; Nel-
list, P. D.; Sim, R. B.; Mather, S. J.; Green, M. L. H.; Kostarelos, K.;
Davis, B. G. Nat. Mater. 2010, 9, 485. (f) Hong, V.; Presolski, S. I.; Ma,
C.; Finn, M. G. Angew. Chem., Int. Ed. 2009, 48, 9879. (g) Lutz, J.-F.
Angew. Chem., Int. Ed. 2007, 46, 1018.
(5) (a) Krasinski, A.; Fokin, V. V.; Sharpless, K. B. Org. Lett. 2004, 6,
1237. (b) Himbert, G.; Frank, D.; Regitz, M. Chem. Ber. 1976, 109, 370.
(c) Akimova, G. S.; Chistokletov, V. N.; Petrov, A. A. Zh. Org. Khim.
1968, 4, 389. (d) Boyer, J. H.; Mack, C. H.; Goebel, N.; Morgan, L. R. J.
Org. Chem. 1958, 23, 1051.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
In summary, we have developed the nickel-catalyzed azide–
alkyne cycloaddition to access 1,5-disubstituted 1,2,3-triazoles
from readily available substrates and inexpensive reagents at
room temperature. The Cp2Ni precatalyst and Xantphos ligand
were critical to accomplish the catalytic manifold, insensitive to
molecular oxygen and water. This methodology exhibits a broad
substrate scope, good functional group tolerance, high yields, and
high regioselectivity, complementing the classical copper-
catalyzed click chemistry that produces 1,4-disubstituted 1,2,3-
triazoles. The synthetic utility of this nickel-catalyzed pathway
has been highlighted by the functionalization of carbohydrates
and amino acids. Further mechanistic studies of catalyst activation
and intermediate formation are underway.
(6) Kwok, S. W.; Fotsing, J. R.; Fraser, R. J.; Rodionov, V. O.; Fokin, V.
V. Org. Lett. 2010, 12, 4217.
(7) (a) Johansson, J. R.; Beke-Somfai, T.; Stalsmeden, A. S.; Kann, N.
Chem. Rev. 2016, 116, 14726. (b) Boren, B. C.; Narayan, S.; Rasmussen,
L. K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V. V. J. Am. Chem. Soc.
2008, 130, 8923. (c) Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Wil-
liams, I. D.; Sharpless, K. B.; Fokin, V. V.; Jia, G. J. Am. Chem. Soc. 2005,
127, 15998.
(8) (a) Oakdale, J. S.; Fokin, V. V.; Umezaki, S.; Fukuyama, T. Org.
Synth. 2013, 90, 96. (b) Johansson, J. R.; Lincoln, P.; Nordén, B.; Kann, N.
J. Org. Chem. 2011, 76, 2355.
(9) (a) Chalker, J. In Chemoselective and Bioorthogonal Ligation Reac-
tions: Concepts and Applications; Algar, W. R.; Dawson, P. E.; Medintz, I.
L., Eds.; pp 231–270; Wiley: Weinheim, 2017. (b) Krall, N.; de Cruz, F.
P.; Boutureira, O.; Bernardes, G. J. L. Nat. Chem. 2016, 8, 103. (c) Bou-
tureira, O.; Bernardes, G. J. L. Chem. Rev. 2015, 115, 2174. (d) McKay, C.
S.; Finn, M. G. Chem. Biol. 2014, 21, 1075. (e) Sletten, E. M.; Bertozzi, C.
R. Angew. Chem., Int. Ed. 2009, 48, 6974.
(10) (a) Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Acc.
Chem. Res. 2001, 34, 895. (b) Staudaher, N. D.; Stolley, R. M.; Louie, J.
Chem. Commun. 2014, 50, 15577.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website.
Detailed experimental procedures, HRMS-ESI data, and NMR
(1H, 13C, 19F, NOESY, and HSQC) spectra (DOCX)
Single crystal X-ray data for 3ah and 3ja (CIF)
(11) Ding, S.; Jia, G.; Sun, J. Angew. Chem., Int. Ed. 2014, 53, 1877.
(12) Creary, X.; Anderson, A.; Brophy, C.; Crowell, F.; Funk, Z. J. Org.
Chem. 2012, 77, 8756.
AUTHOR INFORMATION
(13) (a) Seeberger, P. H. Acc. Chem. Res. 2015, 48, 1450. (b) Wang, L.-
X.; Davis, B. G. Chem. Sci. 2013, 4, 3381. (c) Gamblin, D. P.; Scanlan, E.
M.; Davis, B. G. Chem. Rev. 2009, 109, 131. (d) Seeberger, P. H.; Werz,
D. B. Nature 2007, 446, 1046. (e) Seeberger, P. H.; Haase, W.-C. Chem.
Rev. 2000, 100, 4349.
(14) Barefield, E. K.; Krost, D. A.; Edwards, D. S.; Van Derveer, D. G.;
Trytko, R. L.; O’Rear, S. P.; Williamson. A. N. J. Am. Chem. Soc. 1981,
103, 6219.
(15) (a) Uhlig, E.; Walther, H. Z. Anorg. Allg. Chem. 1974, 409, 89. (b)
Olechowski, J. R.; McAlister, C. G.; Clark, R. F. Inorg. Chem. 1965, 4,
246. (c) Ledbeater, N. E. J. Org. Chem. 2001, 66, 7539.
(16) Becalska, A.; Debad, J. D.; Sanati, H. K.; Hill, R. H. Polyhedron
1990, 9, 581.
(17) Saraev, V. V.; Kraikivskii, P. B.; Zelinskii, S. N.; Vil'ms, A. I.;
Matveev, D. A.; Yunda, A. Yu.; Fedonina, A. A.; Lammertsma, K. Russ. J.
Coord. Chem. 2006, 32, 397.
(18) (a) Mindiola, D. J.; Waterman, R.; Jenkins, D. M.; Hillhouse, G. L.
Inorg. Chim. Acta 2003, 345, 299. (b) Kitiachvili, K. D.; Mindiola, D. J.;
Hillhouse, G. L. J. Am. Chem. Soc. 2004, 126, 10554.
(19) (a) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509,
299. (b) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890. (c)
Montgomery, J. Acc. Chem. Res. 2000, 33, 467.
Corresponding Author
*syhong@unist.ac.kr
ORCID
Woo Gyum Kim: 0000-0002-9807-4141
Gonçalo J. L. Bernardes: 0000-0001-6594-8917
Sung You Hong: 0000-0002-5785-4475
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work was supported by the National Research Foundation of
Korea (NRF-2016K1A3A1A25003511) and the IT R&D program
of MOTIE/KEIT (10046306). J.-U.R. acknowledges support from
the UNIST Research Fund (2013-1.130085.01).
REFERENCES
(1) (a) Meldal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952. (b) Kolb,
H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40,
2004. (c) Becer, C. R.; Hoogenboom, R.; Schubert, U. S. Angew. Chem.,
Int. Ed. 2009, 48, 4900.
(2) (a) Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302. (b) Mo-
ses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249. (c) Kumar,
A. S.; Ghule, V. D.; Subrahmanyam, S.; Sahoo, A. K. Chem. Eur. J. 2013,
19, 509.
(3) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596. (b) Tornoe, C. W.; Christensen, C.;
Meldal, M. J. Org. Chem. 2002, 67, 3057.
ACS Paragon Plus Environment