ACS Combinatorial Science
Research Article
(4) (a) El-Emam, A. A.; Al-Deeb, O. A.; Al-Omar, M.; Lehmann, J.
Synthesis, antimicrobial, and anti-HIV-1 activity of certain 5-(1-
adamantyl)-2-substituted thio-1,3,4-oxadiazoles and 5-(1-adamantyl)-
3-substituted aminomethyl-1,3,4-oxadiazoline-2-thiones. Bioorg. Med.
Chem. 2004, 12, 5107−5113. (b) Dogan, H. N.; Duran, A.; Rollas, S.;
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Sener, G.; Uysal, M. K.; Gulen, D. Synthesis of new 2,5-Disubstituted-
This research was supported by the Bio & Medical Technology
Development Program of the National Research Foundation
(NRF) funded by the Ministry of Science, ICT & Future
Planning (No. 2014M3A9A9073847). And this research was
also financially supported by the Ministry of Trade, Industry &
Energy (MOTIE), and the Korea Institute for Advancement of
Technology (KIAT) through the industrial infrastructure
program for fundamental technologies (Grant Number
M0000338).
̈
1,3,4-thiadiazoles and preliminary evaluation of anticonvulsant and
antimicrobial activities. Bioorg. Med. Chem. 2002, 10, 2893−2898.
(c) Chandrakantha, B.; Isloor, A. M.; Shetty, P.; Fun, H. K.; Hedgde,
G. Synthesis and biological evaluation of novel substituted 1,3,4-
thiadiazole and 2,6-di aryl substituted imidazo [2,1-b] [1,3,4]
thiadiazole derivatives. Eur. J. Med. Chem. 2014, 71, 316−323.
(5) (a) Chapleo, C. B.; Myers, M.; Myers, P. L.; Saville, J. F.; Smith,
A. C. B.; Stillings, M. R.; Tulloch, I. F.; Walter, D. S.; Welbourn, A. P.
Substituted 1,3,4-thiadiazoles with anticonvulsant activity. 1. Hydra-
zines. J. Med. Chem. 1986, 29, 2273−2280. (b) Chapleo, C. B.; Myers,
P. L.; Smith, A. C.; Stillings, M. R.; Tulloch, I. F.; Walter, D. S.
Substituted 1,3,4-thiadiazoles with anticonvulsant activity. 4. Amidines.
J. Med. Chem. 1988, 31, 7−11. (c) Tabatabai, S. A.; Lashkari, S. B.;
Zarrindast, M. R.; Gholibeikian, M.; Shafiee, A. Design, Synthesis and
Anticonvulsant Activity of 2-(2-Phenoxy)phenyl-1,3,4-oxadiazole
Derivatives. Iran. J. Pharm. Res. 2013, 12, 105−111. (d) Rajak, H.;
Singour, P.; Kharya, M. D.; Mishra, P. A novel series of 2,5-
disubstituted 1,3,4-oxadiazoles: synthesis and SAR study for their
anticonvulsant activity. Chem. Biol. Drug Des. 2011, 77, 152−158.
(e) Luszczki, J. J.; Karpinska, M.; Matysiak, J.; Niewiadomy, A.
Characterization and preliminary anticonvulsant assessment of some
1,3,4-thiadiazole derivatives. Pharmacol. Rep. 2015, 67, 588−592.
(6) (a) Bondock, S.; Adel, S.; Etman, H. A.; Badria, F. A. Synthesis
and antitumor evaluation of some new 1,3,4-oxadiazole-based
heterocycles. Eur. J. Med. Chem. 2012, 48, 192−199. (b) Rajak, H.;
Agarawal, A.; Parmar, P.; Thakur, B. S.; Veerasamy, R.; Sharma, P. C.;
Kharya, M. D. 2,5-Disubstituted-1,3,4-oxadiazoles/thiadiazole as
surface recognition moiety: Design and synthesis of novel hydroxamic
acid based histone deacetylase inhibitors. Bioorg. Med. Chem. Lett.
2011, 21, 5735−5738. (c) Guan, P.; Sun, F.; Hou, X.; Wang, F.; Yi, F.;
Xu, W.; Fang, H. Design, synthesis and preliminary bioactivity studies
of 1,3,4-thiadiazole hydroxamic acid derivatives as novel histone
deacetylase inhibitors. Bioorg. Med. Chem. 2012, 20, 3865−3872.
(d) Valente, S.; Trisciuoglio, D.; Luca, T. D.; Nebbioso, A.; Labella,
D.; Lenoci, A.; Bigogno, C.; Dondio, G.; Miceli, M.; Brosch, G.;
Donatella, D. B.; Altucci, L.; Mai, A. 1,3,4-Oxadiazole-Containing
Histone Deacetylase Inhibitors: Anticancer Activities in Cancer Cells.
J. Med. Chem. 2014, 57, 6259−6265. (e) Dawood, K. M.; Gomha, S.
M. Synthesis and Anti-cancer Activity of 1,3,4-Thiadiazole and 1,3-
Thiazole Derivatives Having 1,3,4-Oxadiazole Moiety. J. Heterocyclic.
Chem. 2015, 52, 1400−1405. (f) Alam, M. S.; Liu, L.; Lee, D. U.
Cytotoxicity of new 5-phenyl4,5-dihydro-1,3,4-thiadiazole analogues.
Chem. Pharm. Bull. 2011, 59, 1413−1416.
REFERENCES
■
(1) (a) Hermakens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. C. Solid-
phase organic reactions II: A review of the literature Nov 95−Nov 96.
Tetrahedron 1997, 53, 5643−5678. (b) Gordon, E. M.; Barrett, R. W.;
Dower, W. J.; Foder, S. P. A.; Gallop, M. A. Applications of
Combinatorial Technologies to Drug Discovery. 2. Combinatorial
Organic Synthesis, Library Screening Strategies, and Future Directions.
J. Med. Chem. 1994, 37, 1385−1401. (c) Palomo, J. M. Solid-phase
peptide synthesis: an overview focused on the preparation of
biologically relevant peptides. RSC Adv. 2014, 4, 32658−32672.
(d) Nandy, J. P.; Prakesch, M.; Khadem, S.; Reddy, P. T.; Sharma, U.;
Arya, P. Advances in Solution- and Solid-Phase Synthesis toward the
Generation of Natural Product-like Libraries. Chem. Rev. 2009, 109,
1999−2060.
̌ ́
(2) (a) Krchnak, V.; Holladay, M. W. Solid Phase Heterocyclic
Chemistry. Chem. Rev. 2002, 102, 61−92. (b) Nefzi, A.; Ostresh, J. M.;
Houghten, R. A. The Current Status of Heterocyclic Combinatorial
Libraries. Chem. Rev. 1997, 97, 449−472. (c) Thompson, L. A.;
Ellman, J. A. Synthesis and Applications of Small Molecule Libraries.
Chem. Rev. 1996, 96, 555−600. (d) Terrett, N. K.; Gardner, M.;
Gordon, D. W.; Kobylecki, R. J.; Steele, J. Combinatorial synthesis
the design of compound libraries and their application to drug
discovery. Tetrahedron 1995, 51, 8135−8173. (e) Dua, R.; Shrivastava,
S.; Sonwane, S. K.; Srivastava, S. K. Pharmacological Significance of
Synthetic Heterocycles Scaffold: A Review. Adv. Biol. Res. 2011, 5,
120−144. (f) Saini, M. S.; Kumar, A.; Dwivedi, J.; Singh, R. A Review:
Biological Significances of Heterocyclic Compounds. International
Journal of Pharma Sciences and Research 2013, 4, 66−77.
(3) (a) Mullican, M. D.; Wilson, M. W.; Connor, D. T.; Kostlan, C.
R.; Schrier, D. J.; Dyer, R. D. Design of 5-(3,5-di-tert-butyl-4-
hydroxyphenyl)-1,3,4-thiadiazoles, −1,3,4-oxadiazoles, and −1,2,4-
triazoles as orally active, nonulcerogenic antiinflammatory agents. J.
Med. Chem. 1993, 36, 1090−1099. (b) Song, Y.; Connor, D. T.; Sercel,
A. D.; Sorenson, R. J.; Doubleday, R.; Unangst, P. C.; Roth, B. D.;
Beylin, V. G.; Gilbertsen, R. B.; Chan, K.; Schrier, D. J.; Guglietta, A.;
Bornemeier, D. A.; Dyer, R. D. Synthesis, Structure−Activity
Relationships, and in Vivo Evaluations of Substituted Di-tert-
butylphenols as a Novel Class of Potent, Selective, and Orally Active
Cyclooxygenase-2 Inhibitors. 2. 1,3,4- and 1,2,4-Thiadiazole Series1. J.
Med. Chem. 1999, 42, 1161−1169. (c) Boschelli, D. H.; Connor, D. T.;
Bornemeier, D. A.; Dyer, R. D.; Kennedy, J. A.; Kuipers, P. J.;
Okonkwo, G. C.; Schrier, D. J.; Wright, C. D. 1,3,4-Oxadiazole, 1,3,4-
thiadiazole, and 1,2,4-triazole analogs of the fenamates: in vitro
inhibition of cyclooxygenase and 5-lipoxygenase activities. J. Med.
Chem. 1993, 36, 1802−1810. (d) Durgashivaprasad, E.; Mathew, G.;
Sebastian, S.; Reddy, S. A. M.; Mudgal, J.; Nampurath, G. K. Novel
2,5-disubstituted-1,3,4-oxadiazoles as anti-inflammatory drugs. Indian.
J. Pharmacol. 2014, 46, 521−526. (e) Singh, A. K.; Lohani, M.;
Parthsarthy, R. Synthesis, Characterization and Anti-Inflammatory
Activity of Some 1,3,4-Oxadiazole Derivatives. Iran. J. Pharm. Res.
2013, 12, 319−323. (f) Sharma, R.; Sainy, J.; Chaturvedi, S. C. 2-
Amino-5-sulfanyl-1,3,4-thiadiazoles: A new series of selective cyclo-
oxygenase-2 inhibitors. Acta Pharm. 2008, 58, 317−326.
(7) (a) Turner, S.; Myers, M.; Gadie, B.; Nelson, A. J.; Pape, R.;
Saville, J. F.; Doxey, J. C.; Berridge, T. L. Antihypertensive thiadiazoles.
1. Synthesis of some 2-aryl-5-hydrazino-1,3,4-thiadiazoles with vaso-
dilator activity. J. Med. Chem. 1988, 31, 902−906. (b) Turner, S.;
Myers, M.; Gadie, B.; Hale, S. A.; Horsley, A.; Nelson, A. J.; Pape, R.;
Saville, J. F.; Doxey, J. C.; Berridge, T. L. Antihypertensive thiadiazoles.
2. Vasodilator activity of some 2-aryl-5-guanidino-1,3,4-thiadiazoles. J.
Med. Chem. 1988, 31, 906−913.
(8) Gong, Y. D.; Yang, S. J.; Kim, S. H. 2-Amino-substituted
oxadiazole derivatives and pharmaceutical composition comprising the
same. KR 10-2013-013059, October 10, 2013.
(9) (a) Ross, S. E.; Hemati, N.; Longo, K. A.; Bennett, C. N.; Lucas,
P. C.; Erickson, R. L.; MacDougald, O. A. Inhibition of Adipogenesis
by Wnt Signaling. Science 2000, 289, 950−953. (b) Liu, J.; Farmer, S.
R. Regulating the Balance between Peroxisome Proliferator-activated
Receptor γ and β-Catenin Signaling during Adipogenesis: A
GLYCOGEN SYNTHASE KINASE 3β PHOSPHORYLATION-
DEFECTIVE MUTANT OF β-CATENIN INHIBITS EXPRESSION
OF A SUBSET OF ADIPOGENIC GENES. J. Biol. Chem. 2004, 279,
45020−45027. (c) Moldes, M.; Zuo, Y.; Morrison, R. F.; Silva, D.;
I
ACS Comb. Sci. XXXX, XXX, XXX−XXX