Paper
Dalton Transactions
i
11 G. Becker, W. Schwarz, N. Seidler and M. Westerhausen, Z.
Anorg. Allg. Chem., 1992, 612, 72–82.
procedure) to Pr3Si–O–CuP; (cf. the 17O-NMR spectrum of
di-n-butyl ether in C6D6 shows a resonance at 5 ppm).
12 I. Krummenacher and C. C. Cummins, Polyhedron, 2012, 30 L. Weber, B. Torwiehe, G. Bassmann, H.-G. Stammler and
32, 10–13. B. Neumann, Organometallics, 1996, 15, 128–132.
13 F. F. Puschmann, D. Stein, D. Heift, C. Hendriksen, 31 R. Appel and W. Paulen, Tetrahedron Lett., 1983, 24, 2639–
Z. A. Gál, H.-F. Grützmacher and H. Grützmacher, Angew.
Chem., Int. Ed., 2011, 50, 8420–8423.
14 A. R. Jupp and J. M. Goicoechea, Angew. Chem., Int. Ed.,
2013, 52, 10064–10067.
15 D. Heift, Z. Benkő and H. Grützmacher, Dalton Trans.,
2014, 43, 831–840.
2642.
32 V. Plack, J. R. Görlich, A. Fischer and R. Schmutzler,
Z. Anorg. Allg. Chem., 1999, 625, 1979–1984.
33 R. Appel and W. Paulen, Angew. Chem., Int. Ed. Engl., 1983,
22, 785–786.
34 L. C. Allen, J. Am. Chem. Soc., 1989, 111, 9003–9014.
16 S. Alidori, D. Heift, G. Santiso-Quinones, Z. Benkő, 35 W. T. Brady and T. C. Cheng, J. Org. Chem., 1977, 42, 732–
H. Grützmacher, M. Caporali, L. Gonsalvi, A. Rossin and
M. Peruzzini, Chem.–Eur. J., 2012, 18, 14805–14811.
17 A. R. Jupp and J. M. Goicoechea, J. Am. Chem. Soc., 2013,
734.
36 Our calculated bond dissociation energies are similar to
the ones reported previously. See ref. 4.
135, 19131–19134; H. Grützmacher, A. Tondreau, Z. Benkő 37 For a recent review on more elaborated energy decompo-
and J. Harmer, Chem. Sci., 2014, DOI: 10.1039/C3SC53140F.
18 X. Chen, S. Alidori, F. F. Pushmann, G. Santiso-Quinones,
sition analyses, see: M. von Hopffgarten and G. Frenking,
Wires Comput. Mol. Sci., 2012, 2, 43–62.
Z. Benkő, Z. Li, G. Becker, H.-F. Grützmacher and 38 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
H. Grützmacher, Angew. Chem., Int. Ed., 2014, 53, 1641–
1645.
19 K. Hübler and P. Schwerdtfeger, Inorg. Chem., 1998, 38,
157–164.
20 Note that computed coupling constants can differ remark-
ably from the experimentally obtained ones. The values
reported here predict the order of magnitude of the coup-
ling constants.
21 G. Heckmann, G. Becker, S. Horner, H. Richard, H. Kraft
and P. Dvortsak, Z. Naturforsch., B: Chem. Sci., 2001, 56,
146–151.
22 M. Regitz, Chem. Rev., 1990, 90, 191–213.
23 The CuP vibration frequency of F–CuP (1660 cm−1) is very
similar to that of 2. See: H. W. Kroto, J. F. Nixon,
N. P. C. Simmons and N. P. C. Westwood, J. Am. Chem. Soc.,
1978, 100, 446–448; H. E. Hosseini, H. W. Kroto,
J. F. Nixon, S. Brownstein, J. R. Morton and K. F. Preston,
J. Chem. Soc., Chem. Commun., 1979, 653–654.
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng,
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta,
F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar,
J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene,
J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,
R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin,
K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador,
J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas,
J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaus-
sian, Gaussian, Inc., Wallingford CT, 2009.
39 D. Feller, J. Comput. Chem., 1996, 17, 1571–1586.
24 M. I. Povolotskii, A. S. Tarasevich and I. E. Boldeskul, Zh. 40 K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. S. Sun,
Obshch. Khim., 1989, 59, 805–808.
25 P. Fölling, Ph.D. Thesis, Rheinische Friedrich-Wilhelms
Unversität zu Bonn, 1988.
V. Gurumoorthi, J. Chase, J. Li and T. L. Windus, J. Chem.
Inf. Model., 2007, 47, 1045–1052.
41 C. van Wüllen, Phys. Chem. Chem. Phys., 2000, 2, 2137–
2144.
26 In the previous report (see: ref. 8) the authors only used
the calculated chemical shift of Me3SiOCP (−330 ppm) 42 M. R. Duttera, V. W. Day and T. J. Marks, J. Am. Chem. Soc.,
(see ref. 19) as a reference. Since the difference in 1984, 106, 2907–2912.
31P-NMR chemical shifts between the two possible 43 W. Deng, J. R. Cheeseman and M. Frisch, J. Chem. Theor.
isomers is in the range of the accuracy of the calcu- Comput., 2006, 1028–1037.
lations, the values of both reference compounds are 44 E. D. Glendening, A. E. Reed, J. E. Carpenter,
necessary to identify the product.
27 G. Cerioni, A. Plumitallo, J. Frey and Z. Rappoport, Magn.
Reson. Chem., 1995, 33, 669–673.
J. A. Bohmann, C. M. Morales and F. Weinhold, NBO 5.0,
Theoretical Chemistry Institute, University of Wisconsin,
Madison, 2001.
28 A. D. Allen, I. Egle, R. Janoschek, H. W. Liu, J. H. Ma, 45 G. Schaftenaar and J. H. Noordik, J. Comput.-Aided Mol.
R. M. Marra and T. T. Tidwell, Chem. Lett., 1996, 45–46. Des., 2000, 14, 123–134.
29 Presumably the authors assigned the peak of di-n-butyl 46 A. Nicolaides and W. T. Borden, J. Am. Chem. Soc., 1991,
ether (which was used as a solvent during the synthetic
113, 6750–6755.
5928 | Dalton Trans., 2014, 43, 5920–5928
This journal is © The Royal Society of Chemistry 2014