Paper
Dalton Transactions
(25810059), and for Scientific Research on Innovative Areas 12 (a) P. J. Stang and V. V. Zhdankin, J. Am. Chem. Soc., 1993,
“Coordination Program” (24108711).
115, 9808; (b) P. J. Stang and K. Chen, J. Am. Chem. Soc.,
1995, 117, 1667.
13 (a) P. Metrangolo, H. Neukirch, T. Pilati and
G. Resnati, Acc. Chem. Res., 2005, 38, 386; (b) J. Lin,
J. Martí-Rujas, P. Metrangolo, T. Pilati, S. Radice,
G. Resnati and G. Terraneo, Cryst. Growth Des., 2012,
12, 5757.
14 (a) K. L. Hull, W. Q. Anani and M. S. Sanford, J. Am. Chem.
Soc., 2006, 128, 7134; (b) N. D. Ball and M. S. Sanford,
J. Am. Chem. Soc., 2009, 131, 3796; (c) T. Furuya,
H. M. Kaiser and T. Ritter, Angew. Chem., Int. Ed., 2008, 47,
5993; (d) T. Furuya and T. Ritter, J. Am. Chem. Soc., 2008,
130, 10060; (e) T. Furuya, A. E. Strom and T. Ritter, J. Am.
Chem. Soc., 2009, 131, 1662; (f) A. W. Kaspi, A. Yahav-Levi,
I. Goldberg and A. Vigalok, Inorg. Chem., 2008, 47, 5;
(g) D. C. Powers and T. Ritter, Nat. Chem., 2009, 1, 302;
(h) P. S. Fier, J. Luo and J. F. Hartwig, J. Am. Chem. Soc.,
2013, 135, 2552.
Notes and references
1 R. M. Izatt, K. Pawlak and J. S. Bradshaw, Chem. Rev., 1991,
91, 1721.
2 (a) C. H. Park and H. E. Simmons, J. Am. Chem. Soc., 1968,
90, 2431; (b) B. Dietrich, J.-M. Lehn and J. P. Sauvage, Tetra-
hedron Lett., 1969, 34, 2885; (c) J. M. Llinares, D. Powell and
K. Bowman-James, Coord. Chem. Rev., 2003, 240, 57;
(d) V. Amendola, L. Fabbrizzi, C. Mangano, P. Pallavicini,
A. Poggi and A. Taglietti, Coord. Chem. Rev., 2001, 219–221,
821; (e) J. Nelson, V. McKee and G. Morgan, Prog. Inorg.
Chem., 1998, 47, 167.
3 (a) C. D. Gutsche, B. Dhawan, K. H. No and
R. Muthukrishnan, J. Am. Chem. Soc., 1981, 103, 3782;
(b) C. D. Gutsche, in Calixarenes, The Royal Society of Chem- 15 M. D. Struble, M. T. Scerba, M. Siegler and T. Lectka,
istry, Cambridge, 1989; (c) Calixarenes: A Versatile Class of Science, 2013, 340, 57.
Macrocyclic Compounds, ed. J. Vicens and V. Böhmer, Kluwer 16 E. Bosch and C. L. Barnes, Inorg. Chem., 2001, 40,
Academic Publishers, Dordrecht, 1991; (d) V. Böhmer,
Angew. Chem., Int. Ed. Engl., 1995, 34, 713.
4 (a) T. Ogoshi, S. Kanai, S. Fujinami, T. Yamagishi and
3097.
17 Y. Suzaki, K. Shimada, E. Chihara, T. Saito, Y. Tsuchido
and K. Osakada, Org. Lett., 2011, 13, 3774.
Y. Nakamoto, J. Am. Chem. Soc., 2008, 130, 5022; 18 A. A. Neverov, H. X. Feng, K. Hamilton and R. S. Brown,
(b) T. Ogoshi, Y. Nishida, T. Yamagishi and Y. Nakamoto, J. Org. Chem., 2003, 68, 3802.
Macromolecules, 2010, 43, 3145; (c) T. Ogoshi, K. Kitajima, 19 (a) A.-C. C. Carlsson, J. Gräfenstein, J. L. Laurila,
T. Aoki, S. Fujinami, T. Yamagishi and Y. Nakamoto, J. Org.
Chem., 2010, 75, 3268.
J. Bergquist and M. Erdélyi, Chem. Commun., 2012,
48, 1458; (b) A.-C. C. Carlsson, J. Gräfenstein,
A. Budnjo, J. L. Laurila, J. Bergquist, A. Karim,
R. Kleinmaier, U. Brath and M. Erdélyi, J. Am. Chem.
Soc., 2013, 134, 5706; (c) M. Erdélyi, Chem. Soc. Rev.,
2012, 41, 3547.
5 (a) K. Harata, Chem. Rev., 1998, 98, 1803;
(b) H.-J. Schneider, F. Hacket and V. Rüdiger, Chem. Rev.,
1998, 98, 1755; (c) W. Saenger, J. Jacob, K. Gessler,
T. Steiner, D. Hoffmann, H. Sanbe, K. Koizumi,
S. M. Smith and T. Takaha, Chem. Rev., 1998, 98, 1787.
6 I.-H. Chu, H. Zhang and D. V. Dearden, J. Am. Chem. Soc.,
1993, 115, 5736.
20 S. Kobayashi, Y. Yamaguchi, T. Wakamiya, Y. Matsubara,
K. Sugimoto and Z. Yoshida, Tetrahedron Lett., 2003, 44,
1469.
7 J. M. Lehn and J. P. Sauvage, J. Am. Chem. Soc., 1975, 97, 21 M. Jung, Y. Suzaki, T. Saito, K. Shimada and K. Osakada,
6700.
Polyhedron, 2012, 40, 168.
8 K. Bowman-James, Acc. Chem. Res., 2005, 38, 671.
22 F. Neese, WIREs Comput. Mol. Sci., 2012, 2, 73.
9 (a) G. A. Olah, Halonium Ions, Wiley, New York, 1975; 23 G. J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010,
(b) V. V. Grushin, Chem. Soc. Rev., 2000, 29, 315; 132, 154104.
(c) R. S. Brown, R. W. Nagorski, A. J. Bennet, 24 Similar calculations were conducted by LPNO-CEPA/1,
R. E. D. McClung, G. H. M. Aarts, M. Klobukowski,
R. McDonald and B. D. Santarsiero, J. Am. Chem. Soc.,
1994, 116, 2448.
DFT(B3LYP, PBE38) and MP2. The result from PBE38
is similar to those from LPNO-CEPA/1 and
LPNO-CCSD which are known as accurate theories of
electron correlation. The results indicate that the
result from PBE38 possesses higher reliability. B3LYP,
employed in previous investigation for halonium–nitro-
gen coordination (ref. 19), estimate also double-well
potential curve with the smaller energy barrier in
which the local minima for N–Cl distances is shorter
than those from LPNO-CEPA/1, LPNO-CCSD and
PBE38. The result from MP2 calculation is different
from those of the above methods, which has one
local minimum.
10 I. Roberts and G. E. Kimball, J. Am. Chem. Soc., 1937, 59,
947.
11 (a) R. B. Grossman and R. J. Trupp, Can. J. Chem., 1998, 76,
1233; (b) X.-L. Cui and R. S. Brown, J. Org. Chem., 2000, 65,
5653; (c) R. S. Brown, A. A. Neverov, C. T. Liu and
C. I. Maxwell, in In Recent Developments in Carbocation and
Onium Ion Chemistry, ed. K. Laali, American Chemical
Society, Washington, 2007, 458; (d) J. Haas, S. Piguel and
T. Wirth, Org. Lett., 2002, 4, 297; (e) J. Haas, S. Bissmire
and T. Wirth, Chem.–Eur. J., 2005, 11, 5777.
6648 | Dalton Trans., 2014, 43, 6643–6649
This journal is © The Royal Society of Chemistry 2014