Organic Letters
Letter
reviews on the Hauser−Kraus annulation, see: (c) Rathwell, K.; Brimble,
M. A. Synthesis 2007, 643. (d) Mal, D.; Pahari, P. Chem. Rev. 2007, 107,
1892.
good es value, which further expanded the applicability of this
synthetic strategy remarkably (Scheme 5).
(4) (a) Zhuang, Z.; Chen, J.-M.; Pan, F.; Liao, W.-W. Org. Lett. 2012,
14, 2354. (b) Chen, J.-M.; Zou, G.-F.; Liao, W.-W. Angew. Chem., Int. Ed.
2013, 52, 9296.
Scheme 5. Extention of Annulation
(5) For selected recent reviews on the construction of quaternary
carbon centers, see: (a) Douglas, C. J.; Overman, L. E. Proc. Natl. Acad.
Sci. U.S.A. 2004, 101, 5363. (b) Trost, B. M.; Jiang, C. Synthesis 2006,
369. (c) Cozzi, P. G.; Hilgraf, R.; Zimmermann, N. Eur. J. Org. Chem.
2007, 5969. (d) Hawner, C.; Alexakis, A. Chem. Commun. 2010, 46,
7295. (e) Das, J. P.; Marek, I. Chem. Commun. 2011, 47, 4593.
(6) For recent reviews, see: (a) Liu, T.-Y.; Xie, M.; Chen, Y.-C. Chem.
Soc. Rev. 2012, 41, 4101. (b) Rios, R. Catal. Sci. Technol. 2012, 2, 267.
(c) Wei, Y.; Shi, M. Chem. Rev. 2013, 113, 6659. For selected recent
examples of Lewis base-catalyzed AAA reaction of MBH adducts with C-
nuclephiles, see: (d) Jiang, L.; Lei, Q.; Huang, X.; Cui, H. L.; Zhou, X.;
Chen, Y. C. Chem.Eur. J. 2011, 17, 9489. (e) Yang, W.-G.; Wei, X.-L.;
Pan, Y.-H.; Lee, R.; Zhu, B.; Liu, H.-J.; Yan, L.; Huang, K.-W.; Jiang, Z.-
Y.; Tan, C.-H. Chem.Eur. J. 2011, 17, 8066. (f) Furukawa, T.;
Kawazoe, J.; Zhang, W.; Nishimine, T.; Tokunaga, E.; Matsumoto, T.;
Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2011, 50, 9684. (g) Huang,
X.; Peng, J.; Dong, L.; Chen, Y.-C. Chem. Commun. 2012, 48, 2439.
(h) Zhong, F.-R.; Luo, J.; Chen, G.-Y.; Dou, X.-W.; Lu, Y.-X. J. Am.
Chem. Soc. 2012, 134, 10222.
(7) For examples of the natural products containing dihydronaph-
thoquinone structural motif: (a) Opatz, T.; Kolshorn, H.; Thines, E.;
Anke, H. J. Nat. Prod. 2008, 71, 1973−1976. (b) Gu, J.-Q.; Graf, T. N.;
Lee, D.; Chai, H.-B.; Mi, Q.; Kardono, L. B. S.; Setyowati, F. M.; Ismail,
R.; Riswan, S.; Farnsworth, N. R.; Cordell, G. A.; Pezzuto, J. M.;
Swanson, S. M.; Kroll, D. J.; Falkinham, J. O., III; Wall, M. E.; Wani, M.
C.; Kinghorn, A. D.; Oberlies, N. H. J. Nat. Prod. 2004, 67, 1156.
(c) Ernst-Russel, M.; Elix, J.; Chai, C.; Willis, A.; Hamada, N.; Nash, T.,
III. Tetrahedron Lett. 1999, 40, 6321−6324.
In summary, we have developed an unprecedented catalytic
intramolecular annulation via a metal-free AAA and the ensuing
IAA reactions which provided a unique and facile access to
prepare enantioenriched densely functionalized dihydronaph-
thoquinones accompanied by enantiomerically pure 3,3-
disubstituted phthalides bearing quaternary carbon centers
under neutral and mild conditions. The scope and versatility of
the process was demonstrated. Further extension of this
synthetic strategy also has been exhibited. Efforts on the studies
of the synthetic applications are ongoing in our laboratories.
ASSOCIATED CONTENT
* Supporting Information
■
S
Full experimental details and characterization data. This material
AUTHOR INFORMATION
Corresponding Author
■
(8) Recent reviews on natural products and biologically important
molecules containing 3,3-disubstituted phthalide structural motifs:
(a) Beck, J. J.; Chou, S.-C. J. Nat. Prod. 2007, 70, 891. (b) Xiong, M. J.;
Li, Z. H. Curr. Org. Chem. 2007, 11, 833.
(9) Reactions between MBH carbonates with the aryl moietie and
phthalides 1 were also well-tolerated. However, the annulation of
corresponding allylic substituted phthalides did not give any desired
products.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by NSFC (No. 21372096 and
21102054) and the Open Project of State Key Laboratory for
Supramolecular Structure and Materials (sklssm201409).
(10) For recent examples for TBACN-catalyzed reactions, see:
(a) North, M.; Omedes-Pujol, M.; Young, C. Org. Biomol. Chem.
2012, 10, 4289. (b) Ohashi, M.; Maeda, H.; Mizuno, K. Chem. Lett.
2010, 39, 462. (c) Areces, P.; Carrasco, E.; Light, M. E.; Plumet, J. Synlett
2009, 2500. (d) Aljarilla, A.; Cordoba, R.; Csaky, A. G.; Fernandez, I.;
Ortiz, F. L.; Plumet, J.; Ruiz Gomez, G. Eur. J. Org. Chem. 2006, 17, 3969.
(e) Alcaide, B.; Almendros, P.; Cabrero, G.; Ruiz, M. P. Org. Lett. 2005,
7, 3981. (f) Holmes, B. T.; Snow, A. W. Tetrahedron 2005, 61, 12339.
(g) Amurrio, I.; Cordoba, R.; Csaky, A. G.; Plumet, J. Tetrahedron 2004,
60, 10521.
REFERENCES
■
(1) (a) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. In Comprehensive
Asymmetric Catalysis; Springer-Verlag: Berlin, 1999. (b) Ojima, I.
Catalytic Asymmetric Synthesis; Wiley-VCH: New York, 2000. (c) Blaser,
H. U.; Federsel, H. J. Asymmetric Catalysis on Industrial Scale; Wiley-
VCH:Weinheim, 2004.
(2) Reviews on organocatalytic enantioselective annulations: (a) Ma-
hatthananchai, J.; Bode, J. W. Asymmetric Synthesis II: More Methods and
Applications; Christmann, M., Brase, S., Eds.; Wiley-VCH: Weinheim,
̈
(11) See the Supporting Information for details.
2012; p 67−77. (b) Zhao, Q.-Y.; Lian, Z.; Wei, Y.; Shi, M. Chem.
Commun. 2012, 48, 1724. (c) Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc.
Rev. 2008, 37, 1140. (d) Liu, T.-Y.; Xie, M.; Chen, Y.-C. Chem. Soc. Rev.
2012, 41, 4101. Recent examples of metal-free asymmetric annulations:
(e) Li, P. F.; Payette, J. N.; Yamamoto, H. J. Am. Chem. Soc. 2007, 129,
9534. (f) Shi, Z.-G.; Yu, P.-Y; Loh, T.-P.; Zhong, G.-f. Angew. Chem., Int.
Ed. 2012, 51, 7825. (g) Robinson, E. R. T.; Fallan, C.; Simal, C.; Slawin,
A. M. Z.; Smith, A. D. Chem. Sci. 2013, 4, 2193. (h) Lian, Z.; Shi, M. Org.
Biomol. Chem. 2012, 10, 8048. (i) Sun, F.-G.; Sun, L.-H.; Ye, S. Adv.
Synth. Catal. 2011, 353, 3134. (j) Zhu, Z.-Q.; Zheng, X.-L.; Jiang, N.-F.;
Wan, X.-L.; Xiao, J.-C. Chem. Commun. 2011, 8670. (k) Lu, L.-Q.;
Zhang, J.-J.; Li, F.; Cheng, Y.; An, J.; Chen, J.-R.; Xiao, W.-J. Angew.
Chem., Int. Ed. 2010, 49, 4495. (l) Bappert, E.; Mueller, P.; Fu, G. C.
Chem. Commun. 2006, 2604. (m) Frisch, K.; Landa, A.; Saaby, S.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 6058.
(12) The annulation of 5-methoxy-substituted phthalide (93% ee)
gave the desired product in almost racemic form under the same
reaction conditions as that of 3be.
(13) The unfavorable steric interaction between the 2- (or 5-)
substituted group and oxyanion (or cyano-group) in a 2- or 5-
substitution pattern may result in the possibly reversible equilibrium
between intermediate I and II (Schem 4) and subsequently bring a rapid
equilibrium between I-A and I-B, which may lead to the racemization of
the annulation of 2- or 5-substituted phthalide.
(3) (a) Hauser, F. M.; Rhee, R. P. J. Org. Chem. 1978, 43, 178.
(b) Kraus, G. A.; Sugimoto, H. Tetrahedron Lett. 1978, 19, 2263. Recent
3383
dx.doi.org/10.1021/ol501427h | Org. Lett. 2014, 16, 3380−3383