ChemComm
Communication
S. A. Kozmin, Adv. Synth. Catal., 2006, 348, 2271; (h) A. Lumbroso,
M. L. Cooke and B. Breit, Angew. Chem., Int. Ed., 2013, 52, 1890;
(i) X. Zeng, Chem. Rev., 2013, 113, 6864; ( j) J.-R. Kong, M.-Y. Ngai and
M. J. Krische, J. Am. Chem. Soc., 2006, 128, 718; (k) K. M. Miller,
T. Luanphaisarnnont, C. Molinaro and T. K. Jamison, J. Am. Chem. Soc.,
2004, 126, 4130; (l) H. Li and P. J. Walsh, J. Am. Chem. Soc., 2005, 127, 8355.
¨
4 For recent reviews on C–H activation, see: (a) J. Wencel-Delord, T. Droge,
F. Liu and F. Glorius, Chem. Soc. Rev., 2011, 40, 4740; (b) S. H. Cho,
J. Y. Kim, J. Kwak and S. Chang, Chem. Soc. Rev., 2011, 40, 5068; (c) J. L. Bras
and J. Muzart, Chem. Rev., 2011, 111, 1170; (d) L. Ackermann, Chem. Rev.,
2011, 111, 1315; (e) L. McMurray, F. O’Hara and M. J. Gaunt, Chem. Soc.
Rev., 2011, 40, 1885; ( f) C. S. Yeung and V. M. Dong, Chem. Rev., 2011,
111, 1215; (g) J. Yamaguchi, A. D. Yamaguchi and K. Itami, Angew. Chem.,
Int. Ed., 2012, 51, 8960; (h) M. C. White, Science, 2012, 335, 807;
(i) K. M. Engle, T.-S. Mei, M. Wasa and J.-Q. Yu, Acc. Chem. Res., 2012,
45, 788; ( j) S. R. Neufeldt and M. S. Sanford, Acc. Chem. Res., 2012, 45, 936;
(k) N. Kuhl, M. N. Hopkinson, J. Wencel-Delord and F. Glorius, Angew.
Chem., Int. Ed., 2012, 51, 10236; (l) J. Wencel-Delord and F. Glorius, Nat.
Chem., 2013, 5, 369; (m) L. Ackermann, Acc. Chem. Res., 2014, 47, 281.
5 (a) J. He, M. Wasa, K. S. L. Chan and J.-Q. Yu, J. Am. Chem. Soc., 2013,
135, 3387; (b) S. H. Kim and S. Chang, Org. Lett., 2010, 12, 1868;
(c) I. V. Seregin, V. Ryabova and V. Gevorgyan, J. Am. Chem. Soc.,
2007, 129, 7742; (d) S. H. Kim, J. Yoon and S. Chang, Org. Lett., 2011,
13, 1474; (e) F. Shibahara, Y. Dohke and T. Murai, J. Org. Chem.,
2012, 77, 5381; ( f ) M. Tobisu, Y. Ano and N. Chatani, Org. Lett.,
2009, 11, 3250; (g) L. Yang, L. Zhao and C.-J. Li, Chem. Commun.,
2010, 46, 4184; (h) Y. Gu and X. Wang, Tetrahedron Lett., 2009,
50, 763; (i) S. H. Kim, S. H. Park and S. Chang, Tetrahedron, 2012,
68, 5162.
Fig. 5 Proposed mechanistic pathways.
We present two feasible mechanistic scenarios following
amide-directed C–H activation of 5 to give rhodacycle 23 (Fig. 5):
(1) Following coordination of the alkyne, addition of rho-
dium, expelling 2-iodobenzoic acid would give rise to carbene
25.8g,13,14 Carbene rearrangement to give Rh(V) species 26 would
enable formation of 5 following reductive elimination. Direct
oxidative-addition of 1 to give 26 could also be considered.
(2) In accord with the strongly polarised nature of 1, regio-selective
carborhodation generating alkenyl-rhodacycle 27, followed by
a-elimination of 2-iodobenzoic acid would give rise to rhodium
vinylidene species 28. A concerted or stepwise vinyl-migration8a and
elimination sequence would subsequently give rise to target 5 and
regenerate a catalytically active Rh(III) species: the proposed migration is
supported by labelling studies undertaken by Loh.7 Carborhodation of
the alkyne with the reverse selectivity seems to be unlikely due to
potential steric clashes between the Cp* ligand and the triisopropylsilyl
group, as well as the electronic polarisation of 1.
6 Y. Ano, M. Tobisu and N. Chatani, Synlett, 2012, 2763.
7 Immediately prior to submission of this manuscript, the following was
published: C. Feng and T.-P. Loh, Angew. Chem., Int. Ed., 2014, 53, 2722;
Whilst this manuscript was under revision the following was published:
F. Xie, Z. Qi, S. Yu and X. Li, J. Am. Chem. Soc., 2014, DOI: 10.1021/
ja501910e. For reviews on Rh(III) catalysed C–H activation see: (a) T. Satoh
and M. Miura, Chem. – Eur. J., 2010, 16, 11212; (b) D. A. Colby, A. S. Tsai,
R. G. Bergman and J. A. Ellman, Acc. Chem. Res., 2011, 45, 814; (c) G. Song,
F. Wang and X. Li, Chem. Soc. Rev., 2012, 41, 3651; (d) F. W. Patureau,
J. Wencel-Delord and F. Glorius, Aldrichimica Acta, 2012, 45, 31;
(e) S. Chiba, Chem. Lett., 2012, 41, 1554.
In summary we have presented for the first time the preparation
of enynes via a C–H activation protocol. This process introduces an
electronically inverted retrosynthetic disconnection of enynes when
compared to the classical Sonogashira coupling. This protocol has also
been applied to the alkynylation of benzamides and further validates
the potential applications of TIPS-EBX 1 by use of rhodium catalysis.
We are most grateful to Prof. Dr Zhuangzhi Shi for experimental
support and Dr Klaus Bergander for NMR analysis. Generous
financial support by the European Research Council (ERC) under
the European Community’s Seventh Framework Program (FP7 2007-
2013)/ERC grant agreement no. 25936, and the DFG (Leibniz award)
is gratefully acknowledged.
8 V. V. Zhdankin, C. J. Kuehl, A. P. Krasutsky, J. T. Bolz and
A. J. Simonsen, J. Org. Chem., 1996, 61, 6547.
9 (a) J. P. Brand, J. Charpentier and J. Waser, Angew. Chem., Int. Ed., 2009,
48, 9346; (b) J. P. Brand, C. Chevalley and J. Waser, Beilstein J. Org. Chem.,
´
´
2011, 7, 565; (c) J. P. Brand, D. Fernandez Gonzalez, S. Nicolai and
J. Waser, Chem. Commun., 2011, 47, 102; (d) J. P. Brand and J. Waser,
Angew. Chem., Int. Ed., 2010, 49, 7304; (e) J. P. Brand and J. Waser, Org.
´
´
´
Lett., 2012, 14, 744; ( f ) D. Fernandez Gonzalez, J. P. Brand and J. Waser,
´
Chem. – Eur. J., 2010, 16, 9457; (g) D. Fernandez Gonzalez, J. P. Brand,
`
R. Mondiere and J. Waser, Adv. Synth. Catal., 2013, 355, 1631; (h) R. Frei
and J. Waser, J. Am. Chem. Soc., 2013, 135, 9620; (i) Y. Li, J. P. Brand and
J. Waser, Angew. Chem., Int. Ed., 2013, 52, 6743; ( j) Y. Li and J. Waser,
´
Beilstein J. Org. Chem., 2013, 9, 1763; (k) S. Nicolai, S. Erard, D. Fernandez
´
Gonzalez and J. Waser, Org. Lett., 2010, 12, 384; (l) G. L. Tolnai, S. Ganss,
J. P. Brand and J. Waser, Org. Lett., 2013, 15, 112.
10 F. Xie, Z. Qi and X. Li, Angew. Chem., Int. Ed., 2014, 52, 11862.
11 Extensive further optimisation under an atmosphere of air using
substrate 2 was unsuccessful.
12 (a) K. D. Collins and F. Glorius, Nat. Chem., 2013, 5, 597;
(b) K. D. Collins and F. Glorius, Tetrahedron, 2013, 69, 7817;
(c) K. D. Collins, A. Ru¨hling, F. Lied and F. Glorius, Chem. – Eur.
J., 2014, DOI: 10.1002/chem.201304508; (d) K. D. Collins, A. Ru¨hling
and F. Glorius, Nat. Protoc., 2014, DOI: 10.1038/nprot.2014.076;
(e) I. Churcher, Nat. Chem., 2013, 5, 554. For applications see:
Notes and references
1 (a) F. Diederich, P. J. Stang and R. R. Tykwinski, Acetylene Chemistry:
Chemistry, Biology and Material Science, Wiley-VCH, Weinheim, 2005;
(b) J. P. Brand and J. Waser, Chem. Soc. Rev., 2012, 41, 4165; (c) E. Negishi
and L. Anastasia, Chem. Rev., 2003, 103, 1979; (d) R. R. Tykwinski, Angew.
´
Chem., Int. Ed., 2003, 42, 1566; (e) R. Chinchilla and C. Najera, Chem. Rev.,
¨
2014, 114, 1783; ( f) I. A. Meretina, B. I. Ionin and J. C. Tebby, Alkynes in
Cycloadditions, Wiley-Blackwell, New Jersey, 2013.
2 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed.,
2001, 40, 2004–2021.
3 (a) I. J. S. Fairlamb, Angew. Chem., Int. Ed., 2004, 43, 1048; (b) C. Aubert,
O. Buisine and M. Malacria, Chem. Rev., 2002, 102, 813; (c) V. Mamane,
P. Hannen and A. Fu¨rstner, Chem. – Eur. J., 2004, 10, 4556; (d) G. C. Lloyd-
( f ) N. Kuhl, N. Schroder and F. Glorius, Org. Lett., 2013, 15, 3860;
(g) H. Wang, B. Beiring, D.-G. Yu, K. D. Collins and F. Glorius,
Angew. Chem., Int. Ed., 2013, 52, 12430; (h) D.-T. D. Tang,
K. D. Collins, J. B. Ernst and F. Glorius, Angew. Chem., Int. Ed.,
2014, 53, 1809; (i) H. G. Lee, P. J. Milner and S. L. Buchwald, Org.
Lett., 2013, 15, 5602; ( j) S. C. Cullen, S. Shekhar and N. K. Nere,
J. Org. Chem., 2013, 78, 12194.
Jones, Org. Biomol. Chem., 2003, 1, 215; (e) B. M. Trost, F. D. Toste and 13 P. J. Stang, Chem. Rev., 1996, 96, 1123.
A. B. Pinkerton, Chem. Rev., 2001, 101, 2067; ( f ) S. T. Diver and 14 M. Ochiai, M. Kunishima, Y. Nagao, K. Fuji, M. Shiro and E. Fujita,
A. J. Giessert, Chem. Rev., 2004, 104, 1317; (g) L. Zhang, J. Sun and
J. Am. Chem. Soc., 1986, 108, 8281.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 4459--4461 | 4461