Communications
Glaser, H. Nöth, Angew. Chem. 1985, 97, 424 –425; Angew.
Chem. Int. Ed. Engl. 1985, 24, 416 –417; b) G. Elter, M. Neuhaus,
A. Meller, D. Schmidt-Baese, J. Organomet. Chem. 1990, 381,
299 –313.
boration is not an option because (a-chloroalkyl)hydrobor-
anes undergo rapid self-reduction in THF,[16] but organo-
metallic reagents should be useful. In view of the wide variety
of organozinc reagents that have become available from the
work of Knochel's group,[17] diethylzinc was chosen for
preliminary tests. All four (a-chloroalkyl)dihaloboranes 8
yielded optically active secondary alcohols 13 after treatment
with excess diethylzinc followed by sodium methoxide and
then alkaline hydrogen peroxide. The enantiomeric purities
of 13 have not been verified, but rotations are in the expected
range. Yields were satisfactory for 13a, excellent for the less
volatile 13b. Intermediate 12 from 8a, X = F, was verified by
the 11B NMR signal at d = 87.5 ppm.
[8] Calculated from NIST-JANAF Thermochemical Tables (Ed.:
M. W. Chase, Jr.), J. Phys. Chem. Ref. Data, Monograph 9,
American Institute of Physics, 1998.
[9] a) K. Hamada, G. A. Ozin, E. A. Robinson, Bull. Chem. Soc.
Jpn. 1971, 44, 2555 –2556; b) R. B. Johannesen, F. E. Brinckman,
T. D. Coyle, J. Phys. Chem. 1968, 72, 660 –667; c) S. G. Frankiss,
J. Phys. Chem. 1967, 71, 3418 –3421.
[10] B. Wrackmeyer, R. Köster, Houben-Weyl, Vol. 13/3c (Ed.: R.
Köster), Thieme, Stuttgart, 1984, p. 377 –611.
[11] H. C. Brown, M. M. Midland, A. B. Levy, J. Am. Chem. Soc.
1973, 95, 2394 –2396.
[12] a) R. Soundararajan, D. S. Matteson, J. Org. Chem. 1990, 55,
2274 –2275; b) D. S. Matteson, R. Soundararajan, Organometal-
lics 1995, 14, 4157 –4166.
[13] a) U. P. Dhokte, S. V. Kulkarni, H. C. Brown, J. Org. Chem. 1996,
61, 5140 –5148; b) U. P. Dhokte, H. C. Brown, Organometallics,
1998, 17, 2891 –2896.
[14] a) H. C. Brown, N. N. Joshi, C. Pyun, B. Singaram, J. Am. Chem.
Soc. 1989, 111, 1754 –1758; b) U. P. Dhokte, H. C. Brown, J. Org.
Chem. 1997, 62, 865 –869.
[15] D. S. Matteson, K. M. Sadhu, M. L. Peterson, J. Am. Chem. Soc.
1986, 108, 812 –819.
[16] a) D. J. Pasto, Sr. , R. Snyder, J. Org. Chem. 1966, 31, 2773 –
2777; b) D. J. Pasto, J. Hickman, T. C. Cheng, J. Am. Chem. Soc.
1968, 90, 6258 –6260.
[17] A. Boudier, L. O. Bromm, M. Lotz, P. Knochel, Angew. Chem.
2000, 112, 4561 –4792; Angew. Chem. Int. Ed. 2000, 39, 4414 –
4435.
[18] E. Keinan, E. K. Hafeli, K. K. Seth, R. Lamed, J. Am. Chem.
Soc. 1986, 108, 162 –169.
[19] a) P. A. Levene, H. L. Haller, J. Biol. Chem. 1929, 83, 579 –600;
b) Further confirmation of absolute configuration with partially
resolved samples: P. A. Levene, A. Walti, J. Biol. Chem. 1932, 94,
367 –372; R. L. Johnson, J. Kenyon, J. Chem. Soc. 1932, 722.
Experimental Section
13a: Trifluoroborate 7a (1.57 g, 7.4 mmol) was stirred for 4 h with
SiCl4 (1.2 mL, 14.8 mmol) in THF (20 mL) at 20–258C under argon.
Most of the excess SiCl4 was removed by concentration under
vacuum. The residue of 8a (X = Cl) in THF (20 mL) at 08C was
treated with ZnEt2 (15 mL, 1m in hexanes). After 12–16 h MeOH
(5 mL) was added at 08C. When gas evolution ceased, the mixture
was treated with NaOMe (2 g, 37 mmol) at 08C, then stirred for 4 h at
20–258C. After cooling to 08C, aqueous NaOH (5 mL, 3m) and H2O2
(30%, 5 mL) were added. After 3 h, the mixture was worked up with
ether and water and the residue was purified by flash chromatography
(10% ether/pentane) and bulb to bulb distillation of 13a (0.507 g,
1
59%); H NMR (CDCl3): d = 3.52 (m, 1H), 1.73 (bs, 1H), 1.23–1.63
(m, 8H), 0.94 (t, J = 7.2 Hz, 3H), 0.91(t, J = 6.9 Hz, 3H); 13C NMR
(CDCl3): d = 73.3, 36.6, 30.1, 27.8, 22.8, 14.1, 9.9 ppm; [a]2D2 = +7.9
(c = 0.03 in CHCl3), [a]52426 = +8.9 (c = 0.03 in CHCl3); (lit., [a]D =
+5.83 (CHCl3) (“95% ee”));[18] [a]D = +6.7 (neat), [a]D = +8.0
(EtOH), [a]D = +8.33 (Et2O).[19]
13b: Similar treatment of 7b (partially epimerized, d.r. 86:14)
1
yielded 13b (94%); H NMR (CDCl3): d = 7.18–7.34 (m, 5H), 3.73
(m, 1H), 2.82 (AB, dd, J = 13.5, 4.2 Hz, 1H), 2.63 (AB, dd, J = 13.5,
8.4 Hz, 1H), 1.64 (bs, 1H), 1.52 (m, 2H), 0.99 ppm (t, J = 7.8 Hz, 3H);
13C NMR (CDCl3): d = 138.6, 129.4, 128.5, 126.3, 74.0, 43.5, 29.5,
10.0 ppm; [a]D = +15.7 (ee < 72%, c = 0.054 in Et2O); [a]546 = +20.0;
no literature data available.
Received: January 7, 2004 [Z53690]
Keywords: alkyl boranes · asymmetric synthesis · boron ·
.
hydroboration
[1] E. Vedejs, R. W. Chapman, S. C. Fields, S. Lin, M. R. Schrimpf, J.
Org. Chem. 1995, 60, 3020 –3027.
[2] a) R. A. Batey, A. N. Thadani, D. V. Smil, Tetrahedron Lett.
1999, 40, 4289 –4292; b) R. A. Batey, A. N. Thadani, D. V. Smil,
A. J. Lough, Synthesis 2000, 990 –998.
[3] A. N. Thadani, R. A. Batey, Org. Lett. 2002, 4, 3827 –3830.
[4] a) D. S. Matteson, Tetrahedron 1998, 54, 10555 –10607; b) D. S.
Matteson, J. Organomet. Chem. 1999, 581, 51 – 65; c) D. S.
Matteson, Chem. Rev. 1989, 89, 1535 –1551.
[5] D. S. Matteson, G. Y. Kim, Org. Lett. 2002, 4, 2153 –2155.
[6] S. Darses, J.-P. Genet, Eur. J. Org. Chem. 2003, 4313 –4327.
ꢀ
ꢀ
[7] Other than B F/B Cl exchange, the only examples found of any
derivation of a chloroborane from a corresponding fluoroborane
involved two steps, elimination of hydrogen fluoride or trime-
thylsilyl fluoride from a suitably substituted sterically hindered
(amino)(fluoro)borane to form an iminoborane, which was
ꢀ
isolated, followed by addition of HCl to make a B Cl bond: a) B.
3058
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 3056 –3058