Organic Letters
Letter
(5) Zhao, X.; Wu, G.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133,
3296.
(6) Yao, T.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed.
the addition of 2 to an electrophilic metal carbene center with the
assistance of a nitrogen lone pair would furnish the zwitterion III.
The direct formation of 4 from III can be achieved by loss of a
proton and rearomatization (Path B). Among them, path B can
be a preferable pathway: (1) formation of III is favored with
electron-rich arenes (aniline derivatives) over the neutral
(toluene) and moderately electron-rich arene (anisole deriva-
tive), and (2) since involvement of a nitrogen lone pair is
important to increase the nucleophilicity of the arene and
formation of III, electrophilic substitution occurs at the para
instead of the ortho position, and ortho-substituted (methyl and
iodo) aniline derivatives were not successful under the present
optimized conditions (Scheme 5). Similarly, attempts toward the
functionalization of an ortho C−H bond with para-substituted
N,N-diethyl-p-methylanilines were also unsuccessful. With the
plausible mechanism, the present method complements and
possesses an advantage over traditional acid mediated electro-
philic aromatic alkylation/acylation, where electron-rich aniline
derivatives are shown to be the least reactive.
In conclusion, we developed an efficient strategy for the direct
arylation of azavinyl carbenes, derived from 1,2,3-triazole with
various arenes. This strategy involves chemo- and regioselective
arene C(sp2)−H insertion and offers electronically and sterically
different substituted enamides, which are of high synthetic
importance. Furthermore, the utility of enamides was demon-
strated through the synthesis of N-based heterocycles, such as
indole and isoquinolines.
2011, 51, 775.
(7) Chan, W.-W.; Lo, S.-F.; Zhou, Z.; Yu, W.-Y. J. Am. Chem. Soc. 2012,
134, 13565.
(8) Yu, X.; Yu, S.; Xiao, J.; Wan, B.; Li, X. J. Org. Chem. 2013, 78, 5444.
(9) Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135,
5364.
(10) Shi, Z.; Koester, D. C.; Boultadakis-Arapinis, M. l.; Glorius, F. J.
Am. Chem. Soc. 2013, 135, 12204.
(11) Cui, S.; Zhang, Y.; Wang, D.; Wu, Q. Chem. Sci. 2013, 4, 3912.
(12) Hu, F.; Xia, Y.; Ye, F.; Liu, Z.; Ma, C.; Zhang, Y.; Wang, J. Angew.
Chem., Int. Ed. 2014, 53, 1364.
(13) Gilchrist, T. L.; Gymer, G. E. Adv. Heterocycl. Chem. 1974, 16, 33.
(14) For a highlight on 1,2,3-triazole as a source of azavinyl carbenes,
see: (a) Gulevich, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2013, 52,
1371. For recent examples on functionalization of 1,2,3-triazole, see:
(b) Chuprakov, S.; Worrell, B. T.; Selander, N.; Sit, R. K.; Fokin, V. V. J.
Am. Chem. Soc. 2014, 136, 195. (c) Miura, T.; Tanaka, T.; Biyajima, T.;
Yada, A.; Murakami, M. Angew. Chem., Int. Ed. 2013, 52, 3883.
(d) Zibinsky, M.; Fokin, V. V. Angew. Chem., Int. Ed. 2013, 52, 1507.
(e) Parr, B. T.; Davies, H. M. L. Angew. Chem., Int. Ed. 2013, 52, 10044.
(f) Alford, J. S.; Spangler, J. E.; Davies, H. M. L. J. Am. Chem. Soc. 2013,
135, 11712. (g) Chuprakov, S.; Kwok, S. W.; Fokin, V. V. J. Am. Chem.
Soc. 2013, 135, 4652. (h) Miura, T.; Tanaka, T.; Hiraga, K.; Stewart, S.
G.; Murakami, M. J. Am. Chem. Soc. 2013, 135, 13652. (i) Parr, B. T.;
Green, S. A.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 4716.
(j) Schultz, E. E.; Sarpong, R. J. Am. Chem. Soc. 2013, 135, 4696.
(k) Spangler, J. E.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 6802.
(l) Miura, T.; Hiraga, K.; Biyajima, T.; Nakamuro, T.; Murakami, M.
Org. Lett. 2013, 15, 3298. (m) Chuprakov, S.; Malik, J. A.; Zibinsky, M.;
Fokin, V. V. J. Am. Chem. Soc. 2011, 133, 10352.
(15) Yadagiri, D.; Anbarasan, P. Chem.Eur. J. 2013, 19, 15115.
(16) (a) Chaitanya, M.; Yadagiri, D.; Anbarasan, P. Org. Lett. 2013, 15,
4960. (b) Saravanan, P.; Anbarasan, P. Org. Lett. 2014, 16, 848.
(17) Recently, a reaction of α-diazoimines and arenes was reported to
yield dearomatizing annulation in an intramolecular version, but no
reaction was observed in an intermolecular version; see: Miura, T.;
Funakoshi, Y.; Murakami, M. J. Am. Chem. Soc. 2014, 136, 2272.
(18) For an alternative synthesis of enamides, see: (a) Gooβen, L. J.;
Salih, K. S. M.; Blanchot, M. Angew. Chem., Int. Ed. 2008, 47, 8492.
(b) Liwosz, T. W.; Chemler, S. R. Chem.Eur. J. 2013, 19, 12771.
(c) Gourdet, B.; Rudkin, M. E.; Watts, C. A.; Lam, H. W. J. Org. Chem.
2009, 74, 7849. (d) Vallin, K. S. A.; Zhang, Q.; Larhed, M.; Curran, D.
P.; Hallberg, A. J. Org. Chem. 2003, 68, 6639. (e) Lee, J. M.; Ahn, D.-S.;
Jung, D. Y.; Lee, J.; Do, Y.; Kim, S. K.; Chang, S. J. Am. Chem. Soc. 2006,
128, 12954. (f) Wallace, D. J.; Klauber, D. J.; Chen, C.-Y.; Volante, R. P.
Org. Lett. 2003, 5, 4749.
ASSOCIATED CONTENT
* Supporting Information
Experimental methods, characterizations data, and H and 13C
■
S
1
NMR spectra of isolated compounds. This material is available
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Department of Science and Technology (DST), New
Delhi for funding this work. D.Y. thanks IITM for an HTRA
fellowship. We thank Mr. Ramkumar (IIT Madras) for single
crystal analysis support.
(19) Selander, N.; Worrell, B. T.; Chuprakov, S.; Velaparthi, S.; Fokin,
V. V. J. Am. Chem. Soc. 2012, 134, 14670.
(20) For selected examples on α-C−H insertion of ethers and amines,
see: (a) Davies, H. M. L.; Beckwith, R. E. J.; Antoulinakis, E. G.; Jin, Q. J.
Org. Chem. 2003, 68, 6126. (b) Davies, H. M. L.; Hansen, T.; Churchill,
M. R. J. Am. Chem. Soc. 2000, 122, 3063. (c) Davies, H. M. L.; Grazini,
M. n. V. A.; Aouad, E. Org. Lett. 2001, 3, 1475. (d) Davies, H. M. L.; Jin,
Q. Org. Lett. 2004, 6, 1769.
(21) CCDC 979169 (4aq) contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via http://www.
(22) (a) Yet, L. Chem. Rev. 2003, 103, 4283. (b) Muller, K.; Sellmer, A.;
Prinz, H. Eur. J. Med. Chem. 1997, 32, 895.
(23) (a) Matsubara, R.; Kobayashi, S. Acc. Chem. Res. 2008, 41, 292.
(b) Carbery, D. R. Org. Biomol. Chem. 2008, 6, 3455.
(24) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2010, 1, 13.
REFERENCES
■
(1) For reviews on metal catalyzed carbene insertion into C−H bonds,
see: (a) Davies, H. M. L.; Beckwith, R. E. Chem. Rev. 2003, 103, 2861.
(b) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417. (c) Doyle,
M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704.
(d) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857.
(2) (a) Padwa, A.; Austin, D. J.; Price, A. T.; Semones, M. A.; Doyle, M.
P.; Protopopova, M. N.; Winchester, W. R.; Tran, A. J. Am. Chem. Soc.
1993, 115, 8669. (b) Hashimoto, S.-I.; Watanabe, N.; Ikegami, S. J.
Chem. Soc., Chem. Commun. 1992, 1508. (c) Tsutsui, H.; Yamaguchi, Y.;
Kitagaki, S.; Nakamura, S.; Anada, M.; Hashimoto, S. Tetrahedron:
Asymmetry 2003, 14, 817.
(3) Buchner, E.; Curtius, T. Ber. Dtsch. Chem. Ges. 1885, 18, 2377.
(4) For selected examples on Buchner reaction, see: (a) Maguire, A. R.;
Buckley, N. R.; O’Leary, P.; Ferguson, G. Chem. Commun. 1996, 2595.
(b) Park, C. P.; Nagle, A.; Yoon, C. H.; Chen, C.; Jung, K. W. J. Org.
Chem. 2009, 74, 6231.
2513
dx.doi.org/10.1021/ol500874p | Org. Lett. 2014, 16, 2510−2513