418
M. Sobkowski et al. / Tetrahedron: Asymmetry 21 (2010) 410–419
added slowly (ca. 15 s) with vigorous stirring. This yielded 5 as a dia-
stereomeric mixture containing ca. 20% of (RP)-5 and 80% of (SP)-5
(
ꢀ4.61 (2 ꢂ Si–CH3); 8.55 (NCH2CH3); 17.97 (Si–C(CH3)3); 18.90
and 18.97 (C(O)CH(CH3)2); 25.60 (Si–C(CH3)3); 36.16
(C(O)CH(CH3)2); 45.68 (NCH2CH3); 55.18 (OCH3); 61.76 (C50);
31P NMR). After work-up (1 ꢂ DCM/TEAB) the product was isolated
as described for the (RP)-isomer, yielding 90 mg of (RP)-5 (de 79%),
280 mg of mixture of diastereomers, and 290 mg of (SP)-5 (de 84%)
after lyophilization from benzene. Total yield 78%.
72.54 (d, JP,C3 4.8 Hz, C30); 74.93 (d, JP,C2 3.8 Hz, C20); 83.69 (d, JP,C4
0
0
0
3.7 Hz, C40); 90.72 (C10); 122.04 (C5); 147.41 and 148.12 (C2 and
C4); 155.42 (C6); 179.09 [NHC(O)]; 31P NMR (DCM) dP 54.93 (dd,
1JH,P 590.7 Hz, 3JH,P 14,66 Hz).
1H NMR (CDCl3) dH 0.08 (3H, s, Si–CH3); 0.14 (3H, s, Si–CH3);
0.87 (9H, s, Si–tBu); 1.30 (9H, t, J 7.5 Hz, NCH2CH3); 3.05 (6H, q,
NCH2CH3); 3.37 (1H, dd, J5 ,5 10.8, J4 ,5 2.0 Hz, H50); 3.65 (1H, dd,
4.2. Typical procedures for desulfurization of H-
phosphonothioate 5
0
00
0
0
J4 ,5 1.9 Hz, H500); 3.77 (6H, s, 2 ꢂ OCH3); 4.40 (1H, br d, J3 ,4
0
00
0
0
1
1
2.2 Hz, H40); 4.48 ( H, dd, J1 ,2 5.8 Hz, J3 ,2 4.7 Hz, H20); 5.16 ( H,
0
0
0
0
ddd, JP,3 13.7 Hz, H30); 5.21 (1H, d, JH6,H5 8.2 Hz, H5); 6.06 (1H, d,
Pivaloyl chloride (250
dine H-phosphonothioate 5 (421 mg, 0.5 mmol) in MeCN (10 mL)
containing dimethylaniline (DMA, 600 L) and water (100 L,
11 equiv). After 5 min DMA (500 L), water (40 L), and PvCl
(250 L) were added successively two times in 5 min intervals. The
lL, 4 equiv) was added to a solution of uri-
0
H10); 6.81–7.42 (13.5H, m, Ar + 1/2 P–H); 7.82 (1H, d, H6); 8.89
(0.5H, 1/2 d, 1/2 P–H); 9.25 (1H, br s, NH); 12.09 (1H, br s, NH);
13C NMR (CDCl3; DMTr resonances not listed) dC ꢀ4.97 (Si–CH3);
ꢀ4.70 (Si–CH3); 8.51 (NCH2CH3); 17.93 (Si–C(CH3)3); 25.58 (Si–
C(CH3)3); 45.54 (NCH2CH3); 55.17 (OCH3); 62.70 (C50); 74.66 (d,
l
l
l
l
l
31P NMR spectrum showed 65%, 88%, and >99% of desulfurization
of 5 after addition of each portion of PvCl. Triethylamine (1 mL)
wasaddedtopreventdetritylationandthesolventswereevaporated
under reduced pressure. The residue was dissolved in DCM and ex-
tracted with TEAB buffer. Silica gel chromatography (initial isocratic
3% MeOH in DCM, followed by 3?5% gradient of MeOH in DCM
containing 2% TEA) and lyophilization from benzene afforded 20-O-
(t-butyldimethylsilyl)-50-O-(dimethoxytrityl)uridin-30-yl H-phos-
phonate as a white amorphous solid (345 mg, 83%). Analytical data
were consistent with the literature data.25,26
JP,C3 5.0 Hz, C30); 75.12 (d, JP,C2 3.7 Hz, C20); 83.99 (d, JP,C4 4.3 Hz,
0
0
0
C40); 87.83 (C10); 102.22 (C5); 140.24 (C6); 150.49 (C2); 163.08
1
3
(C4); 31P NMR (DCM) dP 55.66 (dd, JH,P 582.4 Hz, JH,P 13.7 Hz).
4.1.4.1. (SP)-5. (SLOW; B = AdeBz).
(3H, s, Si–CH3); 0.05 (3H, s, Si–CH3); 0.75 (9H, s, Si–tBu); 1.32 (9H,
1H NMR (CDCl3) dH ꢀ0.26
0
00
t, J 7.3 Hz, NCH2CH3); 3.09 (6H, q, NCH2CH3); 3.47 (1H, dd, J5 ,5
10.3, J4 ,5 2.6 Hz, H50); 3.54 (1H, dd, J4 ,5 3.3 Hz, H500); 3.77 (6H, s,
0
0
0
00
2 ꢂ OCH3); 4.54 (1H, br s, H40); 5.05 (1H, br t, J2 ,3 4.7 Hz, H20); 5.30
0
0
(1H, br dd, J3 ,4 1.1 Hz, JP,3 13.8 Hz H30); 6.24 (1H, d, J1 ,2 6.8 Hz,
H10); 6.81–7.48 (13.5H, m, Tr + 1/2 P–H); 7.51 (2H, t, J ꢃ7.4 Hz, m-
Bz); 7.59 (1H, t, J ꢃ7.4 Hz, p-Bz); 8.03 (2H, d, J 7.4 Hz, o-Bz); 8.22
(1H, s, H2); 8.71 (1H, s, H8); 8.93 (0.5H, 1/2 d, 1/2 P–H); 9.20 (1H,
br s, NH); 12.06 (1H, br s, NH); 13C NMR (CDCl3; DMTr resonances
not listed) dC ꢀ5.37 (Si–CH3); ꢀ4.71 (Si–CH3); 8.51 (NCH2CH3);
17.75 (Si–C(CH3)3); 25.47 (Si–C(CH3)3); 45.49 (NCH2CH3); 55.14
0
0
0
0
0
4.3. Determination of the configuration of diastereomers of H-
phosphonothioate 8
3H-2,1-Benzoxathiol-3-one 1-oxide (BOTO) was prepared in situ
by treating 3H-l,2-benzodithiol-3-one 1,l-dioxide (Beaucage re-
agent, 0.15 mmol/100 lL of MeCN) with TEA (10 l
L).27 The precipi-
(OCH3); 63.26 (C50); 75.40 (m, C20, C30); 84.96 (d, JP,C4 4.0 Hz, C40);
tated sulfur was centrifuged and the supernatant was added to an
MeCN solution of alkyl nucleoside H-phosphonothioates 8a or 8b
(0.05 mmol/400 lL) obtained in situ as described above (Method
0
86.74, 87.51 (C10, C5); 141.50 (C2); 144.56 (C6); 158.43 (C4);
1
3
164.52 (C(O)Ph); 31P NMR (DCM) dP 56.79 (dd, JH,P 585.2 Hz, JH,P
13.7 Hz).
A). The diastereomeric composition of the resulting diesters 9a or
9b was analyzed by 31P NMR spectroscopy and their configurations
wereidentifiedby spikingthereactionmixtureswitha solutionof9a
or 9b, respectively, prepared as a SP/RP 1:4 diastereomeric mixture as
described previously.2
4.1.4.2. (SP)-5. (SLOW; B = CytBz).
s, Si–CH3); 0.16 (3H, s, Si–CH3); 0.90 (9H, s, Si–tBu); 1.29 (9H, t, J
1H NMR(CDCl3)dH 0.15(3H,
0
00
7.3 Hz, NCH2CH3); 3.04 (6H, q, NCH2CH3); 3.54 (1H, br d, J5 ,5 11.0,
H50); 3.65 (1H, dd, J4 ,5 2.7 Hz, H500); 3.80 (6H, s, 2 ꢂ OCH3); 4.47
0
00
1
(2H, m, H20, H40); 5.05 ( H, dt, JP,3 12.5 Hz, J2 ,3 ꢃ5.2 Hz, J4 ,3
Acknowledgements
0
0
0
0
0
ꢃ5.2 Hz H30); 6.05 (1H, d, J1 ,2 3.4 Hz, H10); 6.84–7.42 (14.5H, m,
Tr + H5 + 1/2 P–H); 7.49 (2H, t, J ꢃ7.8 Hz, m-Bz); 7.58 (1H, t, J
ꢃ7.9 Hz, p-Bz); 7.90 (2H, d, J 6.3 Hz, o-Bz); 8.36 (1H, d, J5,6 6.5 Hz,
H6); 8.82 (0.5H, 1/2 d, 1/2 P–H); 12.13 (1H, br s, NH); 13C NMR
(CDCl3; DMTr resonances not listed) dC ꢀ4.91 (Si–CH3); ꢀ4.73 (Si–
CH3); 8.51 (NCH2CH3); 18.03 (Si–C(CH3)3); 25.78 (Si–C(CH3)3);
0
0
The financial support from Polish Ministry of Science and High-
er Education is gratefully acknowledged.
References
45.50 (NCH2CH3); 55.19 (OCH3); 61.85 (C50); 73.03 (br d, JP,C3
1. Almer, H.; Stawinski, J.; Stromberg, R. Nucleic Acids Res. 1996, 24, 3811–3820.
2. Sobkowski, M.; Jankowska, J.; Stawinski, J.; Kraszewski, A. Nucleosides
Nucleotides Nucleic Acids 2005, 24, 1469–1484.
3. Sobkowski, M.; Kraszewski, A.; Stawinski, J. Tetrahedron: Asymmetry 2007, 18,
2336–2348.
4. Stawinski, J.; Thelin, M. Tetrahedron Lett. 1992, 33, 3189–3192.
5. Kers, I.; Stawinski, J.; Kraszewski, A. Tetrahedron Lett. 1998, 39, 1219–1222.
6. Kers, I.; Cieslak, J.; Jankowska, J.; Kraszewski, A.; Stawinski, J. Nucleosides
Nucleotides 1999, 18, 1245–1246.
7. Misiura, K.; Szymanowicz, D.; Olesiak, M.; Stec, W. J. Tetrahedron Lett. 2004, 45,
4301–4305.
8. Jankowska, J.; Cieslak, J.; Kraszewski, A.; Stawinski, J. Tetrahedron Lett. 1997, 38,
2007–2010.
9. Seeberger, P. H.; Jorgensen, P. N.; Bankaitis-Davis, D.; Beaton, G.; Caruthers, M.
H. J. Am. Chem. Soc. 1996, 118, 9562–9566.
10. Hiresova, R.; Putilova, L.; Kullberg, M.; Stawinski, J.. In Collection Symposium
Series; Hocek, M., Ed.; Institute of Organic Chemistry and Biochemistry,
Academy of Sciences of the Czech Republic: Prague, 2005; Vol. 7, pp 201–205.
11. Zain, R.; Stromberg, R.; Stawinski, J. J. Org. Chem. 1995, 60, 8241–8244.
12. Stawinski, J.; Zain, R. Nucleosides Nucleotides 1995, 14, 711–714.
13. Kers, I.; Kers, A.; Stawinski, J.; Kraszewski, A. Tetrahedron Lett. 1999, 40, 3945–
3948.
0
4.4 Hz, C30); 75.67 (br d, JP,C2 2.6 Hz, C20); 82.61 (br d, JP,C4 3.7 Hz,
0
0
C4’); 90.22 (C10); 96.4 (br, C5); 144.18 (C2); 144.9 (br, C6); 158.57
(C4); 161.96 (br C(O)Ph); 31P NMR (DCM) dP 54.43 (dd, JH,P
1
576.0 Hz, JH,P 12.8 Hz); 31P NMR (toluene) dP 54.88 (dd, JH,P
3
1
577.4 Hz, 3JH,P 12.4 Hz).
4.1.4.3. (SP)-5. (SLOW; B = Guaibu).
1H NMR (CDCl3) dH ꢀ0.16
(3H, s, Si–CH3); 0.06 (3H, s, Si–CH3); 0.77 (9H, s, Si–tBu); 0.84 and
0.97 (2 ꢂ 3H, 2 ꢂ d, J 6.8 Hz, 2 ꢂ CHCH3) 1.27 (9H, t, J 7.4 Hz,
NCH2CH3); 1.95 (1H, septet, J 6.6 Hz CHCH3), 3.05 (6H, q, NCH2CH3);
0
0
00
0
0
0
0
3.31 (1H, dd, J5 ,5 10.2 Hz, J4 ,5 3.5 Hz, H5 ); 3.45 (1H, dd, J4 ,5 1.9 Hz,
1
H500); 3.76 (6H, s, OCH3); 4.36 ( H, br d, J3 ,4 1.8 Hz, H4 ); 5.04 (1H, t,
0
0
0
J1 ,2 4.0 Hz, J3 ,2 7.1 Hz, H20); 5.50 (1H, ddd, JP,3 13.6 Hz, H30); 5.81
(1H, d, H10); 6.70–7.50 (13.5H, m, Ar + 1/2 P–H); 7.78 (1H, d, H8);
8.63 (0.5H, 1/2 d, 1/2 P-H); 11.76 (1H, br s, NH–ibu); 11.99 (1H, br
s, NH); 13C NMR (CDCl3; DMTr resonances not listed) dC ꢀ5.26 and
0
0
0
0
0