D
M. A. Zolfigol et al.
Letter
Synlett
(23) Kundu, S. K.; Bhaumik, A. RSC Adv. 2015, 5, 32730.
(24) Maleki, B.; Sheikh, S. RSC Adv. 2015, 5, 42997.
General Procedure for the Synthesis of 2-Amino-4H-
chromene Derivatives through
a Cascade Knoevenagel–
(25) Dekamin, M. G.; Eslami, M. Green Chem. 2014, 16, 4914.
(26) Kumar, B. S.; Srinivasulu, N.; Udupi, R. H.; Rajitha, B.; Reddy, Y.
T.; Reddy, P. N.; Kumar, P. S. J. Heterocycl. Chem. 2006, 43, 1691.
(27) Heravi, M. M.; Baghernejad, B.; Oskooie, H. A. J. Chin. Chem. Soc.
2008, 55, 659.
(28) Lakshmi, N. V.; Kiruthika, S. E.; Perumal, P. T. Synlett 2011,
1389.
(29) Maggi, R.; Ballini, R.; Sartori, G.; Sartorio, R. Tetrahedron Lett.
2004, 45, 2297.
Michael Cyclocondensation Sequence
To a mixture of aryl aldehyde (1 mmol), malononitrile (0.066 g,
1 mmol), and phenol (1 mmol) in a round-bottom flask, [4,4′-
bipyridine]-1,1′-diium tricyanomethanide (3 mg) was added
and the mixture was stirred at either room temperature (Table
2, entries 1–5) or 80 °C (entries 6–19) in the absence of solvent
for the appropriate time (Table 2). After completion of the reac-
tion as monitored by TLC (n-hexane/ethyl acetate, 2:1), ethyl
acetate (10 mL) was added and the reaction mixture was stirred
and heated to reflux for 10 min. The resulting mixture was then
washed with water (10 mL) and decanted to separate catalyst
from the other materials (the reaction mixture was soluble in
hot ethyl acetate and nanostructured molten salt catalyst was
soluble in water). The aqueous layer was decanted, separated,
and the water was removed to recover the catalyst for further
use. The organic layer was dried, filtered, the solvent was
removed, and the crude product was purified by recrystalliza-
tion from ethanol (95%) to give the pure product with high to
excellent yields (Table 2).
(30) Kalla, R. M. N.; Byeon, S. J.; Kim, M. S. H. Tetrahedron 2013, 69,
10544.
(31) (a) Dupot, J. Acc. Chem. Res. 2011, 44, 1223. (b) Plechkova, N.;
Seddon, K. Chem. Soc. Rev. 2008, 37, 123. (c) Olivier-Bourbigou,
H.; Travers, P.; Chodorge, J. A. Pet. Technol. Q. 1999, Q4, 141.
(d) Lozano, P.; de Diego, T.; Carrie, D.; Vaultier, M.; Iborra, J. L.
Biotechnol. Prog. 2003, 19, 380.
(32) Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772.
(33) Hayes, R.; Warr, G. G.; Atkin, R. Chem. Rev. 2015, 115, 6357.
(34) Taheri, A.; Lai, B.; Cheng, Ch.; Gu, Y. Green Chem. 2015, 17, 812.
(35) (a) Zolfigol, M. A.; Baghery, S.; Moosavi-Zare, A. R.; Vahdat, S.
M.; Alinezhad, H.; Norouzi, M. RSC Adv. 2015, 5, 45027.
(b) Zolfigol, M. A.; Afsharnadery, F.; Baghery, S.; Salehzadeh, S.;
Maleki, F. RSC Adv. 2015, 5, 75555. (c) Zolfigol, M. A.; Baghery,
S.; Moosavi-Zare, A. R.; Vahdat, S. M. RSC Adv. 2015, 5, 32933.
(d) Zolfigol, M. A.; Baghery, S.; Moosavi-Zare, A. R.; Vahdat, S.
M.; Alinezhad, H.; Norouzi, M. RSC Adv. 2014, 4, 57662.
(36) (a) Zolfigol, M. A.; Khakyzadeh, V.; Moosavi-Zare, A. R.; Zare, A.;
Azimi, S. B.; Asgari, Z.; Hasaninejad, A. C. R. Chim. 2012, 15, 719.
(b) Zolfigol, M. A.; Khazaei, A.; Moosavi-Zare, A. R.; Zare, A.;
Asgari, Z.; Khakyzadeh, V.; Hasaninejad, A. J. Ind. Eng. Chem.
(Amsterdam, Neth.) 2013, 19, 721. (c) Moosavi-Zare, A. R.;
Zolfigol, M. A.; Zarei, M.; Zare, A.; Khakyzadeh, V. J. Mol. Liq.
2013, 186, 63. (d) Moosavi-Zare, A. R.; Zolfigol, M. A.; Zarei, M.;
Zare, A.; Khakyzadeh, V.; Hasaninejad, A. Appl. Catal., A 2013,
467, 61. (e) Moosavi-Zare, A. R.; Zolfigol, M. A.; Khaledian, O.;
Khakyzadeh, V.; Farahani, M. D.; Kruger, H. G. New J. Chem.
2014, 38, 2342. (f) Moosavi-Zare, A. R.; Zolfigol, M. A.; Daraei,
M. Synlett 2014, 25, 1173. (g) Moosavi-Zare, A. R.; Zolfigol, M. A.;
Khakyzadeh, V.; Böttcher, C.; Beyzavi, M. H.; Zare, A.;
Hasaninejad, A.; Luque, R. J. Mater. Chem. A 2014, 2, 770.
(h) Ghorbani, M.; Noura, S.; Oftadeh, M.; Gholamia, E.; Zolfigol,
M. A. RSC Adv. 2015, 5, 55303. (i) Zolfigol, M. A.; Ayazi-nas-
rabadi, R.; Baghery, S. RSC Adv. 2015, 5, 71942.
Selected Characterization Data
2-Amino-4-(4-chlorophenyl)-7-hydroxy-4H-chromene-3-
carbonitrile (Table 2, Entry 1)
Yield: 94% (0.280 g); mp 239–241 °C. FTIR (KBr): 3463, 3343,
3251, 2193, 1643, 1506, 1402, 1154, 1111 cm–1 1H NMR
.
(400.13 MHz, DMSO-d6): δ = 4.67 (s, 1 H, CH), 6.42 (d, 4J = 2 Hz,
1 H, ArH), 6.50 (dd, 3J= 8 Hz, 4J = 2 Hz, 1 H, ArH), 6.79 (d, 3J =
8 Hz, 1 H, ArH), 6.92 (s, 2 H, NH2), 7.19 (d, 3J = 8 Hz, 2 H, ArH),
3
7.37 (d, J = 8 Hz, 2 H, ArH), 9.73 (s, 1 H, OH). 13C NMR (100.61
MHz, DMSO-d6): δ = 55.8, 102.2, 112.4, 113.2, 120.5, 128.5,
129.3, 129.9, 131.2, 145.3, 148.8, 157.2, 160.2.
2-Amino-4-(4-bromophenyl)-7-hydroxy-4H-chromene-3-
carbonitrile (Table 2, Entry 4)
Yield: 92% (0.315 g); mp 251–253 °C. FTIR (KBr): 3470, 3340,
3256, 2191, 1640, 1507, 1411, 1155, 1112 cm–1 1H NMR
.
(400.13 MHz, DMSO-d6): δ = 4.66 (s, 1 H, CH), 6.42 (d, 4J =
3
2.4 Hz, 1 H, ArH), 6.50 (dd, J = 8 Hz, 4J = 2.4 Hz, 1 H, ArH), 6.80
(m, 1 H, ArH), 6.92 (s, 2 H, NH2), 7.13 (d, 3J = 8.4 Hz, 2 H, ArH),
7.50 (d, 3J = 8.4 Hz, 2 H, ArH), 9.74 (s, 1 H, OH). 13C NMR (100.61
MHz, DMSO-d6): δ = 55.7, 102.2, 112.5, 113.1, 119.7, 120.5,
129.6, 129.9, 131.5, 145.7, 148.8, 157.2, 160.2.
2-Amino-7-hydroxy-4-(3-methoxyphenyl)-4H-chromene-3-
carbonitrile (Table 2, Entry 11)
Yield: 89% (0.262 g); mp 180–182 °C. FTIR (KBr): 3446, 3340,
1
(37) Meng, X. Y.; Wang, H. J.; Wang, C. P.; Zhang, Z. H. Synth.
Commun. 2011, 41, 3477.
(38) Chaker, A.; Najahi, E.; Nepveu, F.; Chabchoub, F. Arab. J. Chem.
(39) Javanshir, Sh.; Safari, M.; Dekamin, M. G. Sci. Iran., Trans. C 2014,
21, 742.
3219, 2192, 1641, 1508, 1410, 1154, 1115, 1048 cm–1. H NMR
(400.13 MHz, DMSO-d6): δ = 3.72 (s, 3 H, OMe), 4.59 (s, 1 H, CH),
6.41 (d, 4J = 2.4 Hz, 1 H, ArH), 6.49 (dd, 3J = 8 Hz, 4J = 2.4 Hz, 1 H,
ArH), 6.72–6.85 (m, 4 H, ArH), 6.87 (s, 2 H, NH2), 7.23 (t, 3J =
8 Hz, 1 H, ArH), 9.67 (s, 1 H, OH). 13C NMR (100.61 MHz, DMSO-
d6): δ = 54.9, 56.1, 102.1, 111.5, 112.3, 113.4, 113.6, 119.5,
120.6, 129.7, 129.8, 147.9, 148.8, 157.1, 159.3, 160.3.
(40) General Procedure for the Preparation of Nanostructured
Molten Salt {[4,4′-BPyH][C(CN)3]2}
3-Amino-1-(4-dichlorophenyl)-1H-benzo[f]chromene-2-car-
bonitrile (Table 2, Entry 13)
To an aqueous solution of tricyanomethane (0.455 g, 5 mmol, 5
mL), 4,4′-bipyridine (0.39 g, 2.5 mmol) was added and the
resulting mixture was stirred for 3 h at ambient temperature.
The solvent was then evaporated under reduced pressure. The
pale-yellow powder was dried under vacuum at 100 °C for 3 h.
The obtained pale-yellow solid was filtered, washed repeatedly
with diethyl ether to remove any unreacted starting materials,
and then dried under vacuum.
Yield: 90% (0.331 g); mp 240–242 °C. FTIR (KBr): 3463, 3324,
3190, 2200, 1661, 1589, 1407, 1237, 819 cm–1. 1H NMR (400.13
MHz, DMSO-d6): δ = 5.72 (s, 1 H, CH), 7.03 (d, 3J = 8.4 Hz, 1 H,
ArH), 7.11 (s, 2 H, NH2), 7.27 (dd, 3J = 8.4 Hz, 4J = 2 Hz, 1 H, ArH),
7.35 (d, 3J = 8.8 Hz, 1 H, ArH), 7.43–7.52 (m, 2 H, ArH), 7.58 (d,
3J = 8.4 Hz, 1 H, ArH), 7.64 (d, 4J = 2.4 Hz, 1 H, ArH), 7.94–7.99
(m, 2 H, ArH). 13C NMR (100.61 MHz, DMSO-d6): δ = 55.0, 114.0,
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–E