585
F. Prause et al.
Paper
Synthesis
(9) For selected recent examples, see: (a) Yao, L.; Wei, Y.; Wang, P.;
He, W.; Zhang, S. Tetrahedron 2012, 68, 9119. (b) Qin, D.-D.; Lai,
W.-H.; Hu, D.; Chen, Z.; Wu, A.-A.; Ruan, Y.-P.; Zhou, Z.-H.; Chen,
H.-B. Chem. Eur. J. 2012, 18, 10515. (c) Xu, K.; Lai, G.; Zha, Z.;
Pan, S.; Chen, H.; Wang, Z. Chem. Eur. J. 2012, 18, 12357.
(d) Leighty, M. W.; Shen, B.; Johnston, J. N. J. Am. Chem. Soc.
2012, 134, 15233. (e) White, J. D.; Shaw, S. Org. Lett. 2012, 14,
6270. (f) Dai, Q.; Rana, N. K.; Zhao, J. C.-G. Org. Lett. 2013, 15,
2922. (g) Qin, D.-D.; Yu, W.; Zhou, J.-D.; Zhang, Y.-C.; Ruan, Y.-P.;
Zhou, Z.-H.; Chen, H.-B. Chem. Eur. J. 2013, 19, 16541. (h) Das,
A.; Kureshy, R. I.; Prathap, K. J.; Choudhary, M. K.; Rao, G. V. S.;
Khan, N. H.; Abdi, S. H. R.; Bajaj, H. C. Appl. Catal. A 2013, 459,
97. (i) Deng, T.; Cai, C. J. Fluorine Chem. 2013, 156, 183. (j) Ćwiek,
R.; Niedziejko, P.; Kałuża, Z. J. Org. Chem. 2014, 79, 1222.
(10) Scharnagel, D.; Prause, F.; Kaldun, J.; Haase, R. G.; Breuning, M.
Chem. Commun. 2014, 50, 6623.
(11) Besides 5a (see ref. 10), there are only two further diamines of
type 5 known, namely 5f and a 5-cis, N′-diaryl derivative, see:
(a) Castro, A. C.; Depew, K. M.; Grogan, M. J.; Holson, E. B.;
Hopkins, B. T.; Johannes, C. W.; Keaney, G. F.; Koney, N. O.; Liu,
T.; Mann, D. A.; Nevalainen, M.; Peluso, S.; Perez, L. B.; Snyder, D.
A.; Tibbitts, T. T. WO 2008024337 A2, 2008; Chem. Abstr. 2008,
148, 308502. (b) Hutchison, A.; Peterson, J.; Doller, D.;
Gustavson, L. E.; Caldwell, T.; Yoon, T.; Pringle, W.;
Bakthavatchalam, R.; Shen, Y.; Steenstra, C.; Yin, H.; De Simone,
R.; He, X.-S. WO 2002094799 A2, 2002; Chem. Abstr. 2002, 138,
4617.
(12) For selected examples, see: (a) Fournie-Zaluski, M.-C.; Coric, P.;
Thery, V.; Gonzalez, W.; Meudal, H.; Turcaud, S.; Michel, J.-B.;
Roques, B. P. J. Med. Chem. 1996, 39, 2594. (b) Xu, Y.; Choi, J.;
Calaza, M. I.; Turner, S.; Rapoport, H. J. Org. Chem. 1999, 64,
4069. (c) Baldwin, J. J.; McDonald, E.; Moriarty, K. J.; Sarko, C. R.;
Machinaga, N.; Nakayama, A.; Chiba, J.; Shin, I.; Yoneda, Y. WO
2001000206 A1, 2001; Chem. Abstr. 2001, 134, 86149. (d) Pei, Z.;
Li, X.; Longenecker, K.; von Geldern, T. W.; Wiedeman, P. E.;
Lubben, T. H.; Zinker, B. A.; Stewart, K.; Ballaron, S. J.; Stashko,
M. A.; Mika, A. K.; Beno, D. W. A.; Long, M.; Wells, H.; Kempf-
Grote, A. J.; Madar, D. J.; McDermott, T. S.; Bhagavatula, L.;
Fickes, M. G.; Pireh, D.; Solomon, L. R.; Lake, M. R.; Edalji, R.; Fry,
E. H.; Sham, H. L.; Trevillyan, J. M. J. Med. Chem. 2006, 49, 3520.
(e) Kimura, T.; Kawano, K.; Doi, E.; Kitazawa, N.; Takaishi, M.;
Ito, K.; Kaneko, T.; Sasaki, T.; Miyagawa, T.; Hagiwara, H.;
Yoshida, Y. US 20070117839 A1, 2007; Chem. Abstr. 2007, 147,
31141. (f) Alvaro, G.; Bergauer, M.; Giovannini, R.; Profeta, R.
WO 2007042239 A1, 2007; Chem. Abstr. 2007, 146, 422302.
(g) See also references 11b, 13b and 27.
sequence to be performed as a one-pot, three-step procedure,
with comparable overall yields. To the best of our knowledge,
there is just one example in which NaBH4 has been used; see
ref. 12e.
(17) Gribble, G. W.; Jasinski, J. M.; Pellicone, J. T.; Panetta, J. A. Syn-
thesis 1978, 766.
(18) (a) Rudolph, A. C.; Machauer, R.; Martin, S. F. Tetrahedron Lett.
2004, 45, 4895. (b) Brenneman, J. B.; Machauer, R.; Martin, S. F.
Tetrahedron 2004, 60, 7301.
(19) Such protocols work well for the corresponding esters, see:
(a) Rigo, B.; Lespagnol, C.; Pauly, M. J. Heterocycl. Chem. 1988,
25, 49. (b) Jain, R. Org. Prep. Proced. Int. 2001, 33, 405.
(20) In further studies we found that Grignard reagents containing
lithium salts, as formed by transmetalation of organolithiums,
are not suited for addition. The reaction of compound 11 with
PhMgBr–LiCl–TMEDA (1.5:1.9:1.5), for example, provided 12 in
just 5% yield.
(21) According to ref. 18a, the ethoxycarbonyl group can be removed
with TMSI in refluxing MeCN.
(22) Pyroglutamate 14 is also commercially available. For selected
procedures on the preparation of 14 from 6 or of ent-14 from
ent-6, see: (a) Coudert, E.; Acher, F.; Azerad, R. Synthesis 1997,
863. (b) Aggarwal, V. K.; Astle, C. J.; Iding, H.; Wirz, B.; Rogers-
Evans, M. Tetrahedron Lett. 2005, 46, 945. (c) Reilly, M. WO
2007110835 A2, 2007; Chem. Abstr. 2007, 147, 406709.
(d) Vaswani, R. G.; Chamberlin, A. R. J. Org. Chem. 2008, 73,
1661. (e) Anelli, P. L.; Brocchetta, M.; Lattuada, L.; Manfredi, G.;
Morosini, P.; Murru, M.; Palano, D.; Sipioni, M.; Visigalli, M. Org.
Process Res. Dev. 2009, 13, 739. (f) Hsu, M.-C.; King, C.-H. R.;
Yuan, J.; Chen, W.-C.; Chou, S.-Y.; Shi, B. WO 2010009014 A2,
2010; Chem. Abstr. 2010, 152, 168816.
(23) In the cases of 16b and 16c, the minor diastereomers could not
be fully removed during this stage and the mixtures were
carried on to the next step, where separation by column chro-
matography was successful.
(24) McDermott, T. S.; Bhagavatula, L.; Borchardt, T. B.; Engstrom, K.
M.; Gandarilla, J.; Kotecki, B. J.; Kruger, A. W.; Rozema, M. J.;
Sheikh, A. Y.; Wagaw, S. H.; Wittenberger, S. J. Org. Process Res.
Dev. 2009, 13, 1145.
(25) (a) Lin, G.-J.; Huang, P.-Q. Org. Biomol. Chem. 2009, 7, 4491.
(b) Aebi, J.; Binggeli, A.; Green, L.; Hartmann, G.; Maerki, H. P.;
Mattei, P. US 20110082294 A1, 2011; Chem. Abstr. 2011, 154,
410031. (c) For related cyclizations of γ-amino ketones, see:
Abels, F.; Lindemann, C.; Schneider, C. Chem. Eur. J. 2014, 20,
1964.
(26) The silyl ethers 18 and 19 were isolated as single diastereomers
with unknown absolute configurations.
(13) For selected examples, see: (a) Momotake, A.; Togo, H.;
Yokoyama, M. J. Chem. Soc., Perkin Trans.
(b) Hoveyda, H.; Schils, D.; Zoute, L.; Parcq, J. WO 2011073376
A1, 2011; Chem. Abstr. 2011, 155, 123247.
1
1999, 1193.
(27) Amino ketone 15c is a known compound, but was not charac-
terized; see: Ayesa, S.; Belda, O.; Björklund, C.; Nilsson, M.;
Russo, F.; Sahlberg, C.; Wiktelius, D. WO 2013095275 A1, 2013;
Chem. Abstr. 2013, 159, 166189.
(28) (a) Mohite, A. R.; Bhat, R. G. J. Org. Chem. 2012, 77, 5423.
(b) Belema, M.; Hewawasam, P. US 20110237636 A1, 2011;
Chem. Abstr. 2011, 155, 484481.
(14) Amide 9a and diamine 5f are known, but were not previously
characterized; see ref. 11a.
(15) The cis/trans ratios were determined from the H NMR spectra
1
of the crude reaction mixtures after reductive cyclization. The
determination of the exact values was difficult for the N-Boc-
protected pyrrolidines since both diastereomers existed as mix-
tures of rotamers.
(29) For other approaches to 16c, see ref. 28a and: Wei, L.; Lubell, W.
D. Can. J. Chem. 2001, 79, 94.
(30) The structures of the products 5, prepared by hydroxy–amine
exchange, were unambiguously confirmed by 2D NMR experi-
ments and, for 5a (see ref. 10) and 5b, by comparison with
material obtained via route III. Rearrangements of 17 into β-
amino piperidines via the sequence of mesylation–aziridinium
formation–nucleophilic attack at C-2 with ring enlargement
were not observed. It has been shown that such rearrangements
(16) In most literature protocols, hydrogenations (see ref. 12) or
modified borohydrides (see ref. 13) are used for the reduction of
the intermediate Δ1-pyrrolidines. Even though the use of these
reagents often results in better cis selectivities, we chose cheap
NaBH4 for the reductions, because this reagent allows the N-
deprotection, reductive cyclization, and N-reprotection
© Georg Thieme Verlag Stuttgart · New York — Synthesis 2015, 47, 575–586