RSC Advances
Communication
N. Habuka, S. Sogabe, M. Ono, C. S. Siedem, T. P. Tang,
C. Gauthier, L. A. DeMeese, S. A. Boyd and S. Fukumoto, J.
Med. Chem., 2011, 54, 8616; (b) H. Matsuoka, N. Ohi,
M. Mihara, H. Suzuki, K. Miyamoto, N. Maruyama,
K. Tsuji, N. Kato, T. Akimoto, Y. Takeda, K. Yano and
T. Kuroki, J. Med. Chem., 1997, 40, 105; (c) S. M. Bromidge,
B. Bertani, M. Borriello, S. Faedo, L. J. Gordon, E. Granci,
M. Hill, H. R. Marshall, L. P. Stasi, V. Zucchelli, G. Merlo,
A. Vesentini, J. M. Watson and L. Zonzini, Bioorg. Med.
Chem. Lett., 2008, 18, 5653; (d) S. M. Bromidge, B. Bertani,
M. Borriello, A. Bozzoli, S. Faedo, M. Gianotti, L. J. Gordon,
M. Hill, V. Zucchelli, J. M. Watson and L. Zonzini, Bioorg.
Med. Chem. Lett., 2009, 19, 2338; (e) T. Hasui, T. Ohra,
N. Ohyabu, K. Asano, H. Matsui, A. Mizukami, N. Habuka,
S. Sogabe, S. Endo, C. S. Siedem, T. P. Tang, C. Gauthier,
L. A. De Meese, S. A. Boyd and S. Fukumoto, Bioorg. Med.
Chem., 2013, 21, 5983.
Scheme 6 Gram-scale synthesis of 3a.
desired natural product cephalandole A in 86% yield through
single-step operation under the standard reaction conditions.
To elucidate the mechanism, some control experiments were
carried out under the standard reaction conditions as shown in
Scheme 5. If only benzo[d]oxazole (1a) was applied under the
standard reaction conditions, o-aminophenol (4) was isolated in
67% yield (Scheme 5a). However, no reaction happened and
almost 90% of reactant 2a was recovered when only 2-oxo-2-
phenylacetic acid (2a) was applied under the standard reaction
conditions (Scheme 5b). Under the standard reaction condi-
tions, when o-aminophenol reacted with 2a, afforded the
desired product 3a in 89% yield (Scheme 5c), suggesting that
o-aminophenol is a key intermediate. This result revealed that a
ring-opening pathway was taken in the reaction.
On the basis of the above experimental results, we proposed
a possible reaction pathway for the formation of 3-aryl-2H-
benzo[b][1,4]oxazin-2-ones. The rst step may involve the ring-
opening of benzo[d]oxazoles leading to o-aminophenol. Then
cyclization reaction of o-aminophenol with 2-oxo-2-arylacetic
acid in the presence of TFA delivers the corresponding 3-aryl-
2H-benzo[b][1,4]oxazin-2-ones as the products.
Finally, it is noteworthy that the present synthetic route to
3-aryl-2H-benzo[b][1,4]oxazin-2-ones could be readily scaled up
to gram quantity without difficulty. For instance, the reaction at
the 20 mmol scale afforded the corresponding product 3-phenyl-
2H-benzo[b][1,4]oxazin-2-one (3a) in 87% yield (Scheme 6).
In summary, we have developed a new strategy for con-
structing 3-aryl-2H-benzo[b][1,4]oxazin-2-ones from TFA-cata-
lyzed tandem reaction of benzo[d]oxazoles with 2-oxo-2-
arylacetic acids. In addition, the method provides an efficient
access to the natural product cephalandole A. Further efforts to
extend this catalytic system to the preparation of other useful
nitrogen-containing heterocycles are currently underway in our
laboratories.
3 (a) Q. Chen, M. Chen, C. Yu, L. Shi, D. Wang, Y. Yang and
Y. Zhou, J. Am. Chem. Soc., 2011, 133, 16432; (b)
M. Rueping, A. P. Antonchick and T. Theissmann, Angew.
´
Chem., Int. Ed., 2006, 45, 6751; (c) C. Saitz, H. Rodrıguez,
´
˜
A. Marquez, A. Canete, C. Jullian and A. Zanocco, Synth.
Commun., 2001, 31, 135; (d) H. Miyabe, Y. Yamaoka and
Y. Takemoto, J. Org. Chem., 2006, 71, 2099.
4 (a) R. A. Duval, G. Lewin, E. Peris, N. Chahboune,
A. Garofano, S. Drçse, D. Cortes, U. Brandt and
R. Hocquemiller, Biochemistry, 2006, 45, 2721; (b) X. Li,
N. Liu, H. Zhang, S. E. Knudson, R. A. Slayden and
P. J. Tonge, Bioorg. Med. Chem. Lett., 2010, 20, 6306; (c)
V. L. Gein, N. A. Rassudikhina, N. V. Shepelina,
M. I. Vakhrin, E. B. Babushkina and E. V. Voronina, Pharm.
Chem. J., 2008, 42, 519; (d) S. Bondock, S. Adel,
H. A. Etman and F. A. Badria, Eur. J. Med. Chem., 2012, 48,
192.
5 M. Hu, J. Fan, H. Li, K. Song, S. Wang, G. Cheng and X. Peng,
Org. Biomol. Chem., 2011, 9, 980.
6 (a) K. Azuma, S. Suzuki, S. Uchiyama, T. Kajiro, T. Santa and
K. Imai, Photochem. Photobiol. Sci., 2003, 2, 443; (b) T. Nishio,
J. Chem. Soc., Perkin Trans. 1, 1990, 565; (c) S. Nonell,
˜
¨
L. R. Fenrrares, A. Caete, E. Lemp, G. Gunther, N. Pizarro
and A. L. Zanocco, J. Org. Chem., 2008, 73, 5371.
7 P.-L. Wu, Y.-L. Hsu and C.-W. Jao, J. Nat. Prod., 2006, 69,
1467.
Financial support was provided by the National Natural
Science Foundation of China (nos 21272176 and 21102105)
and Natural Science Foundation of Zhejiang Province (no.
LY12B02011).
8 J. Mason, J. Bergman and T. Janosik, J. Nat. Prod., 2008, 71,
1447.
9 (a) L. Gross, F. Mohn, N. Moll, G. Meyer, R. Ebel,
W. M. Abdel-Mageed and M. Jaspars, Nat. Chem., 2010, 2,
821; (b) L. Gross, Nat. Chem., 2011, 3, 273.
10 (a) C. Trebaul, J. Roncali, F. Garnier and R. Guglielmetti,
Bull. Chem. Soc. Jpn., 1987, 60, 2657; (b) R. B. Moffet, J.
Med. Chem., 1966, 9, 475; (c) A. Chilin, A. Confente,
G. Pastorini and A. Guiotto, Eur. J. Org. Chem., 2002, 1937.
Notes and references
1 (a) Houben-Weyl Methods of Organic Chemistry, Hetarenes IV,
Six-Membered and Larger Hetero-Rings with Maximum
Unsaturation, ed. J. Teller and E. Schaumann, Georg
Thieme, Stuttgart, 1997, vol. E9a, pp. 141–177; (b) Review: 11 (a) D. N. Nicolaides, D. R. Gautam, K. E. Litinas,
ˇ
J. Ilas, P. S. Anderluh, M. S. Dolenc and D. Kikelj,
D. J. Hadjipavlou-Litina and C. A. Kontogiorgis, J.
Heterocycl. Chem., 2004, 41, 605; (b) D. N. Nicolaides,
R. W. Awad and E. A. Varella, J. Heterocycl. Chem., 1996, 33,
633.
Tetrahedron, 2005, 61, 7325.
2 (a) T. Hasui, N. Matsunaga, T. Ora, N. Ohyabu, N. Nishigaki,
Y. Imura, Y. Igata, H. Matsui, T. Motoyaji, T. Tanaka,
16708 | RSC Adv., 2014, 4, 16705–16709
This journal is © The Royal Society of Chemistry 2014