Organic Letters
Letter
nitrilium ion D11 by excess of nitrite. The nitrilium ion D could
distort to structure E, then followed by intramolecular SEAr on
the pending aryl group.19 Deprotonative aromatization of the
resulting cyclohexadienyl cation F delivered the final phenan-
thridine product G (steps f, g, and c).
Angew. Chem., Int. Ed. 2013, 52, 13289. (f) Wang, Q.; Dong, X.; Xiao,
T.; Zhou, L. Org. Lett. 2013, 15, 4846. (g) Gu, L.; Jin, C.; Liu, J.; Ding,
H.; Fan, B. Chem. Commun. 2014, 50, 4643. (h) Zhu, T.-H.; Wang, S.-
Y.; Tao, Y.-Q.; Wei, T.-Q.; Ji, S.-J. Org. Lett. 2014, 16, 1260. (i) Liu, J.;
Fan, C.; Yin, H.; Qin, C.; Zhang, G.; Zhang, X.; Yi, H.; Lei, A. Chem.
Commun. 2014, 50, 2145. (j) Xiao, T.; Li, L.; Lin, G.; Wang, Q.;
Zhang, P.; Mao, Z.-W.; Zhou, L. Green Chem. 2014, DOI: 10.1039/
C3GC42517G. (k) Janza, B.; Studer, A. Org. Lett. 2006, 8, 1875.
(7) (a) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2011, 50,
5018. (b) Studer, A. In Radicals in Organic Synthesis, 1st ed.; Renaud,
P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001; Vol. 2, pp 62−80.
(c) Bolton, R.; Williams, G. H. Chem. Soc. Rev. 1986, 15, 261.
(d) Vaillard, S. E.; Schulte, B.; Studer, A. In Modern Arylation Methods;
Ackermann, L., Ed.; Wiley-VCH: Weinheim, 2009; pp 475−511.
(8) (a) Galli, C. Chem. Rev. 1988, 88, 765. (b) Mo, F.; Dong, G.;
Zhang, Y.; Wang, J. Org. Biomol. Chem. 2013, 11, 1582. (c) Hari, D. P.;
In summary, we have developed a transition-metal-free
synthesis of C6 phenanthridine derivatives by arylative
cyclization of 2-isocyanobiphenyls using readily available and
inexpensive anilines as arylating agents in one pot. A range of
anilines as well as heteroaromatic amines react with 2-
isocyanobiphenyls bearing various functional groups to afford
diversified C6-aryl phenanthridines in good to excellent yields.
This reaction proceeds through key biphenyl imidoyl radical
intermediates formed by addition of aryl radicals to 2-
isocyanobiphenyls. Mechanistic studies reveal that a new
reaction pathway which involves SET of biphenyl imidoyl
radical to the corresponding nitrilium intermediate followed by
SEAr is taking place as a competitive pathway to previously
reported HAS. This method provides a rapid approach to
phenanthridine derivatives under mild conditions and evidence
of a new mode of action of imidoyl radicals as well.
Konig, B. Angew. Chem., Int. Ed. 2013, 52, 4734. (d) Zollinger, H.
̈
Angew. Chem., Int. Ed. Engl. 1978, 17, 141.
(9) (a) Sandmeyer, T. Ber. Dtsch. Chem. Ges. 1884, 17, 1633.
(b) Sandmeyer, T. Ber. Dtsch. Chem. Ges. 1884, 17, 2650.
(10) (a) Meerwein, H.; Buchner, E.; van Emsterk, K. J. Prakt. Chem.
1939, 152, 237. (b) Heinrich, M. R. Chem.Eur. J. 2009, 15, 820.
(c) Doyle, M. P.; Siegfried, B.; Elliott, R. C.; Dellaria, J. F. J. Org. Chem.
1977, 42, 2431. (d) Raucher, S.; Koolpe, G. A. J. Org. Chem. 1983, 48,
2066.
ASSOCIATED CONTENT
* Supporting Information
■
(11) (a) Basavanag, U. M. V.; Dos Santos, A.; El Kaim, L.; Gam
́
ez-
S
Montano, R.; Grimaud, L. Angew. Chem., Int. Ed. 2013, 52, 7194.
̃
Experimental procedure and characterization of new com-
pounds (1H and 13C NMR spectra). This material is available
(b) Xia, Z.; Zhu, Q. Org. Lett. 2013, 15, 4110. (c) Russell, G. A.;
Rajaratnam, R.; Chen, P. Acta Chem. Scand. 1998, 52, 528.
(12) Although BPO decomposes at temperatures higher than 100 °C,
it is also used as a radical promoter at room temperature; see: (a) Mo,
F.; Jiang, Y.; Qiu, D.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2010,
49, 1846. (b) Qiu, D.; Wang, S.; Tang, S.; Meng, H.; Jin, L.; Mo, F.;
Zhang, Y.; Wang, J. J. Org. Chem. 2014, 79, 1979.
AUTHOR INFORMATION
Corresponding Author
■
Notes
(13) In fact, the heterolytic dediazoniation of aryldiazonium salts
prevails under O2, while the homolytic one predominates under N2,
see ref 8a,d.
The authors declare no competing financial interest.
(14) (a) Thome,
Int. Ed. 2013, 52, 7509. (b) Thome,
1892. (c) Beyer, A.; Reucher, C. M.; Bolm, C. Org. Lett. 2011, 13,
2876.
́
I.; Besson, C.; Kleine, T.; Bolm, C. Angew. Chem.,
I.; Bolm, C. Org. Lett. 2012, 14,
́
ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
of China (21272233).
■
(15) The low-yielding formation of 4w is consistent with the
formation of nitrilium ion D rather than only imidoyl radical A in the
annulation step (see Scheme 1), since imidoyl radical A is rather
electron rich, whereas nitrilium ion D is the opposite.
(16) (a) Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F.
Angew. Chem., Int. Ed. 2011, 50, 3793. (b) Annunziata, A.; Galli, C.;
Marinelli, M.; Pau, T. Eur. J. Org. Chem. 2001, 1323. (c) Dai, J.-J.;
Fang, C.; Xiao, B.; Yi, J.; Xu, J.; Liu, Z.-J.; Lu, X.; Liu, L.; Fu, Y. J. Am.
Chem. Soc. 2013, 135, 8436.
REFERENCES
■
(1) (a) Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168.
̈
(b) Zhu, J. Eur. J. Org. Chem. 2003, 1133. (c) Domling, A. Chem. Rev.
̈
2006, 106, 17. (d) Lygin, A. V.; de Meijere, A. Angew. Chem., Int. Ed.
2010, 49, 9094.
(2) (a) Vlaar, T.; Maes, B. W.; Ruijter, E.; Orru, R. V. A. Angew.
Chem., Int. Ed. 2013, 52, 7084. (b) Lang, S. Chem. Soc. Rev. 2013, 42,
4867. (c) Qiu, G.; Ding, Q.; Wu, J. Chem. Soc. Rev. 2013, 42, 5257.
(3) (a) Minozzi, M.; Nanni, D.; Spagnolo, P. Curr. Org. Chem. 2007,
11, 1366. (b) Nanni, D. In Radicals in Organic Synthesis, 1st ed.;
Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001; Vol. 2, pp
44−61.
(4) (a) Curran, D. P.; Liu, H. J. Am. Chem. Soc. 1992, 114, 5863.
(b) Curran, D. P.; Ko, S.-B.; Josien, H. Angew. Chem., Int. Ed. Engl.
1995, 34, 2683.
(5) (a) Fuchino, H.; Kawano, M.; Yasumoto, K. M.; Sekita, S. Chem.
Pharm. Bull. 2010, 58, 1047. (b) Giordani, R. B.; de Andrade, J. P.;
Verli, H.; Dutilh, J. H.; Henriques, A. T.; Berkov, S.; Bastid, J.;
Zuanazzia, J. A. S. Magn. Reson. Chem. 2011, 49, 668. (c) Li, K.;
Frankowski, K. J.; Frick, D. N. J. Med. Chem. 2012, 55, 3319.
(6) (a) Tobisu, M.; Koh, K.; Furukawa, T.; Chatani, N. Angew. Chem.,
(17) (a) Stokes, B. J.; Richert, K. J.; Driver, T. G. J. Org. Chem. 2009,
74, 6442. (b) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91,
165.
(18) Hammett plots have been interpreted as evidence for dual
reaction mechanisms. For leading reports, see: (a) Swansburg, S.;
Buncel, E.; Lemieux, R. P. J. Am. Chem. Soc. 2000, 122, 6594.
(b) Ohshiro, H.; Mitsui, K.; Ando, N.; Ohsawa, Y.; Koinuma, W.;
Takahashi, H.; Kondo, S. i.; Nabeshima, T.; Yano, Y. J. Am. Chem. Soc.
2001, 123, 2478. (c) Moss, R. A.; Ma, Y.; Sauers, R. R. J. Am. Chem.
Soc. 2002, 124, 13968. (d) Zdilla, M. J.; Dexheimer, J. L.; Abu-Omar,
M. M. J. Am. Chem. Soc. 2007, 129, 11505.
(19) (a) Ishikawa, T.; Shimooka, K.; Narioka, T.; Noguchi, S.; Saito,
T.; Ishikawa, A.; Yamazaki, E.; Harayama, T.; Seki, H.; Yamaguchi, K.
J. Org. Chem. 2000, 65, 9143. (b) Talaty, E. R.; Young, S. M.; Dain, R.
P.; Van Stipdonk, M. J. Rapid Commun. Mass Spectrom. 2011, 25, 1119.
Int. Ed. 2012, 51, 11363. (b) Zhang, B.; Muck-Lichtenfeld, C.;
̈
Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2013, 52, 10792.
(c) Leifert, D.; Daniliuc, C. G.; Studer, A. Org. Lett. 2013, 15, 6286.
(d) Zhang, B.; Daniliuc, C. G.; Studer, A. Org. Lett. 2014, 16, 250.
(e) Jiang, H.; Cheng, Y.; Wang, R.; Zheng, M.; Zhang, Y.; Yu, S.
2549
dx.doi.org/10.1021/ol500923t | Org. Lett. 2014, 16, 2546−2549