Organic Letters
Letter
Chlorides. Org. Lett. 2012, 14, 1266−1269. (d) Shrestha, R.; Dorn,
S. C. M.; Weix, D. J. Nickel-Catalyzed Reductive Conjugate Addition
to Enones via Allylnickel Intermediates. J. Am. Chem. Soc. 2013, 135,
751−762. (e) Grigalunas, M.; Norrby, P.−O.; Wiest, O.; Helquist, P.
Single-Flask Multicomponent Palladium-Catalyzed α,γ-Coupling of
Ketone Enolates: Facile Preparation of Complex Carbon Scaffolds.
Angew. Chem., Int. Ed. 2015, 54, 11822−11825. (f) Chen, X.; Liu, X.;
Mohr, J. T. Cu-Catalyzed Stereoselective γ-Alkylation of Enones. J.
Am. Chem. Soc. 2016, 138, 6364−6367.
In summary, we have developed a new methodology for the
endo as well as exo γ-arylations of various unblocked cyclic
enones using a variety of aryl and heteroaryl bromides.
Modified Kuwajima−Urabe conditions were utilized to resolve
the long-standing problem of remote functionalization on
unblocked enone systems. We have also successfully developed
a unique and controlled ε-arylation of a variety of cyclic enones
with varied substitutions. The site selectivity was exclusive in
the γ- and ε-alkenylation of silyl-dienol and silyl-trienol ethers
of cyclic enones. The application of this methodology in the
synthesis of several alkaloids, especially those of the
amaryllidaceae family, is currently in progress in our
laboratory.
(4) (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. Highly
Regioselective Arylation of sp3 C−H Bonds Catalyzed by Palladium
Acetate. J. Am. Chem. Soc. 2005, 127, 13154−13155. (b) Aspin, S.;
́
Lopez-Suarez, L.; Larini, P.; Goutierre, A.-S.; Jazzar, R.; Baudoin, O.
Palladium-Catalyzed β-Arylation of Silyl Ketene Acetals and
Application to the Synthesis of Benzo-Fused δ-Lactones. Org. Lett.
2013, 15, 5056−5059. (c) Yang, K.; Li, Q.; Liu, Y.; Li, G.; Ge, H.
Catalytic C−H Arylation of Aliphatic Aldehydes Enabled by a
Transient Ligand. J. Am. Chem. Soc. 2016, 138, 12775−12778.
(d) Zhu, R.-Y.; Li, Z.-Q.; Park, H. S.; Senanayake, C. H.; Yu, J.-Q.
Ligand-Enabled γ-C(sp3)−H Activation of Ketones. J. Am. Chem. Soc.
2018, 140, 3564−3568.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(5) (a) Lewis, J. R. Amaryllidaceae, Sceletium, imidazole, oxazole,
thiazole, peptide and miscellaneous alkaloids. Nat. Prod. Rep. 2001,
18, 95−128. (b) Jin, Z. Amaryllidaceae and Sceletium alkaloids. Nat.
Prod. Rep. 2005, 22, 111−112. (c) Schmidt, A. W.; Reddy, K. R.;
Experimental details and spectral characterization of all
Accession Codes
̈
Knolker, H.-J. Occurrence, Biogenesis, and Synthesis of Biologically
crystallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
Active Carbazole Alkaloids. Chem. Rev. 2012, 112, 3193−3328.
(d) Roy, J.; Jana, A. K.; Mal, D. Recent trends in the synthesis of
carbazoles: an update. Tetrahedron 2012, 68, 6099−6121. (e) Gao,
H.; Xu, Q.-L.; Yousufuddin, M.; Ess, D. H.; Kurti, L. Angew. Chem.,
̈
Int. Ed. 2014, 53, 2701−2705. (f) Bashir, M.; Bano, A.; Ijaz, A. S.;
Chaudhary, B. A. Recent Developments and Biological Activities of N-
Substituted Carbazole Derivatives: A Review. Molecules 2015, 20,
13496−13517. (g) Czekelius, C. Total Synthesis of Mesembrine−The
Construction of Quaternary Stereocenters by Gold-Catalyzed Diyne
Desymmetrization. Isr. J. Chem. 2018, 58, 568−577. (h) Zhang, X.;
Ma, S. Transition Metal-Catalyzed Benzannulation towards Naturally
Occurring Carbazole Alkaloids. Isr. J. Chem. 2018, 58, 608−621.
(6) (a) Curphey, T. J.; Kim, H. L. A new synthetic approach to the
amaryllidaceae alkaloids. Application to the synthesis of mesembrine
and mesembrinine. Tetrahedron Lett. 1968, 9 (12), 1441−1444.
(b) Bru, C.; Guillou, C. Total syntheses of crinine and related
alkaloids. Tetrahedron 2006, 62, 9043−9048. (c) Bogle, K. M.; Hirst,
D. J.; Dixon, D. J. Total Synthesis of ( )-Powelline and
( )-Buphanidrine. Org. Lett. 2010, 12, 1252−1254. (d) Das, M. K.;
De, S.; Shubhashish; Bisai, A. Concise Total Syntheses of
( )-Joubertiamine, ( )-O-Methyljoubertiamine, ( )-3′-Methoxy-4′-
O-methyljoubertiamine, ( )-Mesembrane, and ( )-Crinane. Syn-
thesis 2016, 48, 2093−2104.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Funding from SERB-India (EMR/2016/004298) and CSIR
India (02(0361)/19/EMR-II) is gratefully acknowledged. G.S.
thanks IISERB for a Research Fellowship. We thank Dr. Sanjit
Konar (IISERB) for the assistance in X-ray analysis and CIF,
IISERB for the analytical data. We also thank the Director,
IISERB for funding and infrastructural facilities.
(7) (a) Wang, L.-N.; Cui, Q.; Yu, Z.-X. A Concise Total Synthesis of
(−)-Mesembrine. J. Org. Chem. 2016, 81, 10165−10171. (b) Zuo, X.-
D.; Guo, S.-M.; Yang, R.; Xie, J.-H.; Zhou, Q.-L. Bioinspired
enantioselective synthesis of crinine-type alkaloids via iridium-
catalyzed asymmetric hydrogenation of enones. Chem. Sci. 2017, 8,
6202−6206. (c) Yan, Q.; Gin, E.; Wasinska-Kalwa, M.; Banwell, M.
G.; Carr, P. D. A Palladium-Catalyzed Ullmann Cross-Coupling/
Reductive Cyclization Route to the Carbazole Natural Products 3-
Methyl-9H-carbazole, Glycoborine, Glycozoline, Clauszoline K,
Mukonine, and Karapinchamine A. J. Org. Chem. 2017, 82, 4148−
4159. (d) Bokka, A.; Mao, J. X.; Hartung, J.; Martinez, S. R.; Simanis,
J. A.; Nam, K.; Jeon, J.; Shen, X. Asymmetric Synthesis of Remote
Quaternary Centers by Copper-Catalyzed Desymmetrization: An
Enantioselective Total Synthesis of (+)-Mesembrine. Org. Lett. 2018,
20, 5158−5162.
REFERENCES
■
(1) Jiang, H.; Albrecht, Ł.; Jørgensen, K. A. Aminocatalytic remote
functionalization strategies. Chem. Sci. 2013, 4, 2287−2300.
(2) Abrams, D. J.; Provencher, P. A.; Sorensen, E. J. Recent
applications of C−H functionalization in complex natural product
synthesis. Chem. Soc. Rev. 2018, 47, 8925−8967.
(3) (a) Deagostino, A.; Prandi, C.; Venturello, P. Palladium-
Catalyzed Heck Reaction on 1-Alkoxy-1,3-dienes: A Regioselective γ-
Arylation of α,β-Unsaturated Carbonyl Compounds. Org. Lett. 2003,
5, 3815−3817. (b) Duez, S.; Bernhardt, S.; Heppekausen, J.; Fleming,
F. F.; Knochel, P. Pd Catalyzed α-Arylation of Nitriles and Esters and
γ-Arylation of Unsaturated Nitriles with TMPZnCl·LiCl. Org. Lett.
2011, 13, 1690−1693. (c) Ziadi, A.; Martin, R. Ligand-Accelerated
Pd-Catalyzed Ketone γ-Arylation via C−C Cleavage with Aryl
(8) Hyde, A. M.; Buchwald, S. L. Palladium-Catalyzed γ-Arylation of
β,γ-Unsaturated Ketones: Application to a One-Pot Synthesis of
Tricyclic Indolines. Angew. Chem., Int. Ed. 2008, 47, 177−180.
(9) Terao, Y.; Kametani, Y.; Wakui, H.; Satoh, T.; Miura, M.;
Nomura, M. Multiple arylation of alkyl aryl ketones and α,β-
D
Org. Lett. XXXX, XXX, XXX−XXX