SHORT COMMUNICATION
[3]
a) E. B. Hulley, P. T. Wolczanski, E. B. Lobkovsky, Chem.
Commun. 2009, 6412–6414; b) B. L. Tran, M. Singhal, H. Park,
O. P. Lam, M. Pink, J. Krzystek, A. Ozarowski, J. Telser, K.
Meyer, D. J. Mindiola, Angew. Chem. 2010, 122, 10067; Angew.
Chem. Int. Ed. 2010, 49, 9871–9875; c) H. A. Spinney, N. A.
Piro, C. C. Cummins, J. Am. Chem. Soc. 2009, 131, 16233–
16243; d) S. Welsch, M. Bodensteiner, M. Dusek, M. Sierka,
M. Scheer, Chem. Eur. J. 2010, 16, 13041–13045; e) L.
Yoong Goh, C. K. Chu, R. C. S. Wong, J. Chem. Soc., Dalton
Trans. 1989, 1951–1956; f) R. Ahlrichs, D. Fenske, K. Fromm,
H. Krautscheid, U. Krautscheid, O. Treutler, Chem. Eur. J.
1996, 2, 238–244; g) P. Barbaro, M. Di Vaira, M. Peruzzini, S.
Seniori Constantini, P. Stoppioni, Eur. J. Inorg. Chem. 2005,
1360–1368; h) C. Bianchini, M. Di Vaira, A. Meli, L. Sacconi,
Inorg. Chem. 1981, 20, 1169–1173; i) C. Bianchini, M. Di Vaira,
A. Meli, L. Sacconi, J. Am. Chem. Soc. 1981, 103, 1448–1452;
j) M. Di Vaira, M. P. Ehses, M. Peruzzini, P. Stoppioni, Polyhe-
dron 1999, 18, 2331–2336; k) M. Di Vaira, M. P. Ehses, P. Stop-
pioni, Inorg. Chem. 2000, 39, 2199–2205; l) M. Di Vaira, C. A.
Ghilardi, S. Midollini, L. Sacconi, J. Am. Chem. Soc. 1978,
100, 2550–2551; m) M. Di Vaira, D. Rovai, P. Stoppioni, Poly-
hedron 1990, 9, 2477–2481; n) M. Di Vaira, P. Stoppioni, M.
Peruzzini, J. Chem. Soc., Dalton Trans. 1990, 109–113; o) P.
Dapporto, L. Sacconi, P. Stoppioni, F. Zanobini, Inorg. Chem.
1981, 20, 3834–3839; p) O. J. Scherer, B. Werner, G. Heckmann,
G. Wolmershauser, Angew. Chem. 1991, 103, 562; Angew.
Chem. Int. Ed. Engl. 1991, 30, 553–555.
M. Di Vaira, P. Stoppioni, S. Midollini, F. Laschi, P. Zanello,
Polyhedron 1991, 10, 2123–2129.
a) M. Di Vaira, P. Stoppioni, Polyhedron 1994, 13, 3045–3051;
b) E. B. Hulley, P. T. Wolczanski, E. B. Lobkovsky, Chem.
Commun. 2009, 42, 6412–6414.
B. M. Cossairt, C. C. Cummins, Angew. Chem. 2010, 122, 1639;
Angew. Chem. Int. Ed. 2010, 49, 1595–1598.
M. H. Chisholm, J. C. Huffman, J. W. Pasterczyk, Inorg. Chim.
Acta 1987, 133, 17–18.
M. Di Vaira, L. Sacconi, P. Stoppioni, J. Organomet. Chem.
1983, 250, 183–195.
M. Scheer, G. Friedrich, K. Schuster, Angew. Chem. 1993, 105,
641–643; Angew. Chem. Int. Ed. Engl. 1993, 32, 593–594.
F. H. Stephens, M. J. A. Johnson, C. C. Cummins, O. P. Krya-
tova, S. V. Kryatov, E. V. Rybak-Akimova, J. E. McDonough,
C. D. Hoff, J. Am. Chem. Soc. 2005, 127, 15191–15200.
N. A. Piro, C. C. Cummins, J. Am. Chem. Soc. 2008, 130, 9524–
9535.
Crystal Data for Cl2W(ODipp)3(THF): C40H59Cl2O4W, monoclinic,
P21/n space group, a = 10.4827(6) Å, b = 23.1828(14) Å, c =
16.5126(10) Å, β = 95.8970(10)°, V = 3991.6(4) Å3, Z = 4, ρcalcd.
=
1.429 gcm–3, μ = 3.065 mm–1. A total of 88816 reflections were
collected in the 2θ range of 1.52–29.57°, 11194 being unique (Rint
= 0.0541). An analytical absorption correction was applied on the
basis of the intensities of equivalent reflections (Tmin = 0.5628, Tmax
= 0.7461). Least-squares refinement on 436 parameters converged
normally with R1 [IϾ2σ(I)] = 0.0248, wR2 = 0.0587, GOOF =
1.062.
Crystal Data for (η3-P3)W(ODipp)3: C36H51O3P3W, monoclinic,
P21/n space group, a = 10.6955(9) Å, b = 17.2654(14) Å, c =
20.4942(16) Å, β = 103.4440(10)°, V = 3680.8(5) Å3, Z = 4, ρcalcd.
= 1.459 gcm–3, μ = 3.301 mm–1. A total of 84532 reflections were
collected in the 2θ range of 2.31–27.47°, 8453 being unique (Rint
=
0.0530). An analytical absorption correction was applied on the
basis of the intensities of equivalent reflections (Tmin = 0.5728, Tmax
= 0.8018). Least-squares refinement on 400 parameters converged
normally with R1 [IϾ2σ(I)] = 0.0219, wR2 = 0.0532, GOOF =
1.076.
Crystal
Data
for
(η3-P3)W(Cl)(ODipp)2(THF)·½THF:
¯
C30H46ClO3.5P3W, triclinic, P space group, a = 9.6030(11) Å, b =
13.6166(16) Å, c = 14.0563(16) Å, α = 110.625(2)°, β = 103.335(2)°,
γ = 91.693(2)°, V = 1661.4(3) Å3, Z = 2, ρcalcd. = 1.549 gcm–3, μ =
3.731 mm–1. A total of 36833 reflections were collected in the 2θ
range of 1.60–29.57°, 9231 being unique (Rint = 0.0449). An analyt-
ical absorption correction was applied on the basis of the intensities
of equivalent reflections (Tmin = 0.5519, Tmax = 0.7461). Least-
squares refinement on 424 parameters converged normally with R1
[IϾ2σ(I)] = 0.0362, wR2 = 0.0985, GOOF = 1.075. The bound
THF was disordered over two positions with occupancies refined
freely, and their sum was restrained to unity. The free THF was
disordered over two symmetry-related positions with occupancies
restrained to ½.
[4]
[5]
[6]
[7]
[8]
[9]
[10]
CCDC-954448 [for Cl2W(ODipp)3(THF)], -954449 [for (η3-P3)-
W(ODipp)3], and -954450 [for (η3-P3)W(Cl)(ODipp)2(THF)·
½THF] contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cam-
bridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[11]
[12]
[13]
D. Tofan, B. M. Cossairt, C. C. Cummins, Inorg. Chem. 2011,
50, 12349–12358.
Supporting Information (see footnote on the first page of this arti-
cle): Solid-state structure of Cl2W(ODipp)3(THF), optimized pro-
tocols for mer-Cl3W(ODipp)3 and Cl2W(ODipp)3(THF), and com-
plete NMR spectroscopic details for all compounds.
a) A. Barth, G. Huttner, M. Fritz, L. Zsolnai, Angew. Chem.
1990, 102, 956–958; Angew. Chem. Int. Ed. Engl. 1990, 29, 929–
931; b) S. Beyreuther, J. Hunger, G. Huttner, S. Mann, L. Zsol-
nai, Chem. Ber. 1996, 129, 745–757; c) G. Capozzi, L. Chiti,
M. Di Vaira, M. Peruzzini, P. Stoppioni, J. Chem. Soc., Chem.
Commun. 1986, 1799–1800.
a) B. M. Cossairt, C. C. Cummins, J. Am. Chem. Soc. 2009,
131, 15501–15511; b) B. M. Cossairt, C. C. Cummins, Chem.
Eur. J. 2010, 16, 12603–12608.
a) C. Bianchini, C. Mealli, A. Meli, L. Sacconi, Inorg. Chim.
Acta 1979, 37, L543–L544; b) C. A. Ghilardi, S. Midollini, A.
Orlandini, L. Sacconi, Inorg. Chem. 1980, 19, 301–306; c) T.
Gröer, M. Scheer, Z. Anorg. Allg. Chem. 2000, 626, 1211–1216;
d) O. J. Scherer, T. Dave, J. Braun, G. Wolmershäuser, J. Or-
ganomet. Chem. 1988, 350, C20–C24.
Acknowledgments
[14]
[15]
This work is based upon work supported by the US National Sci-
ence Foundation under CHE-1111357. J. M. B. acknowledges fin-
ancial support by the German Academic Exchange Service and the
German National Academic Foundation, and support from Prof.
Matthias Wagner. We thank Brandi M. Cossairt and Christopher
R. Clough for help with synthesis and crystallography.
[16]
a) M. Scheer, S. Deng, O. J. Scherer, M. Sierka, Angew. Chem.
2005, 117, 3821; Angew. Chem. Int. Ed. 2005, 44, 3755–3758;
b) M. Peruzzini, J. A. Ramirez, F. Vizza, Angew. Chem. 1998,
110, 2376; Angew. Chem. Int. Ed. 1998, 37, 2255–2257.
F. Quignard, M. Leconte, J. M. Basset, L. Y. Hsu, J. J. Alexan-
der, S. G. Shore, Inorg. Chem. 1987, 26, 4272–4277.
M. L. Listemann, R. R. Schrock, J. C. Dewan, R. M. Kolod-
ziej, Inorg. Chem. 1988, 27, 264–271.
[1] a) M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, Chem.
Rev. 2010, 110, 4178–4235; b) B. M. Cossairt, N. A. Piro, C. C.
Cummins, Chem. Rev. 2010, 110, 4164–4177; c) M. Scheer, G.
Balázs, A. Seitz, Chem. Rev. 2010, 110, 4236–4256; d) C. D.
Martin, C. M. Weinstein, C. E. Moore, A. L. Rheingoldb, G.
Bertrand, Chem. Commun. 2013, 49, 4486–4488.
[17]
[18]
[2] B. M. Cossairt, M.-C. Diawara, C. C. Cummins, Science 2009,
323, 602.
Eur. J. Inorg. Chem. 2014, 1605–1609
1608
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim