Organic Letters
Letter
(3) For selected reviews on intramolecular oxyarylation of allenes,
see: (a) Bates, R. W.; Satcharoen, V. Chem. Soc. Rev. 2002, 31, 12−21.
(b) Ma, S. Acc. Chem. Res. 2003, 36, 701−712.
(4) For a recent review on preparation of allylic alcohols, see:
Lumbroso, A.; Cooke, M. L.; Breit, B. Angew. Chem., Int. Ed. 2013, 52,
1890−1932.
In summary, we developed a copper-catalyzed intermolecu-
lar, three-component oxyarylation of allenes to afford allylic
alcohol derivatives. The reaction proceeded with high regio-,
stereo-, and chemoselectivity under mild conditions (rt). The
substrate scope is broad, and various arylboronic acids and
allenes can be used as substrates with TEMPO as an oxygen
source. The reaction proceeded via (1) transmetalation
between the copper catalyst and arylboronic acid to generate
arylcopper(II) species, (2) carbocupration of allenes to
generate allylcopper(II), (3) homolysis of the C−Cu(II)
bond to give allyl radical species, and (4) a TEMPO trap of
the allyl radical. The in situ generated allyl radical species should
be applicable to other transformations, such as C−C and C−N
bond formation. Further investigation in this direction is
ongoing in our laboratory.
(5) Catalytic intermolecular three-component oxyarylation of allenes
is limited to palladium-mediated reactions: (a) Husinec, S.; Petkovic,
M.; Savic, V.; Simic, M. Synthesis 2012, 399−408. (b) Husinec, S.;
Jadranin, M.; Markovic, R.; Petkovic, M.; Savic, V.; Todorovic, N.
Tetrahedron Lett. 2010, 51, 4066−4068. Highly regio- and
stereoselective oxyarylation of ferrocenylallenes was reported.
(c) Chen, S.; Gao, Z.; Zhao, H.; Li, B. J. Org. Chem. 2014, 79,
1481−1486.
(6) (a) Kawai, J.; Chikkade, P. K.; Shimizu, Y.; Kanai, M. Angew.
Chem., Int. Ed. 2013, 52, 7177−7180. (b) Chikkade, P. K.; Shimizu, Y.;
Kanai, M. Chem. Sci. 2014, 5, 1585−1590.
(7) For selected reports on in situ catalytic generation of nucleophilic
allylmetal species from allenes, see: (a) Han, S. B.; Kim, I. S.; Han, H.;
Krische, M. J. J. Am. Chem. Soc. 2009, 131, 6916−6917. (b) Hopkins,
C. D.; Malinakova, H. C. Org. Lett. 2004, 6, 2221−2224. (c) Meng, F.;
Jang, H.; Jung, B.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2013, 52,
5046−5051. (d) Tran, D. N.; Cramer, N. Angew. Chem., Int. Ed. 2010,
49, 8181−8184.
(8) Although the chiral ligand was used for the oxyarylation of
allenes, no enantio-induction was observed (6 derived from 3aa).
(9) When 5-phenyl-1,2-pentadiene was used as a substrate, the yield
was less than 6% and regioselectivity was 1.4:1.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and analytical data. This material is
■
S
AUTHOR INFORMATION
Corresponding Authors
■
(10) Boger, D. L.; Garbaccio, R. M.; Jin, Q. J. Org. Chem. 1997, 62,
Notes
8875−8891.
(11) Inokuchi, T.; Kawafuchi, H. Tetrahedron Lett. 2004, 60, 11969−
11975.
The authors declare no competing financial interest.
(12) Two-electron mechanism for the cyclopropane ring-opening
step cannot be completely excluded.
ACKNOWLEDGMENTS
■
This work was supported by Grant-in-Aid for Scientific
Research (B) (M.K.) and Grant-in-Aid for Young Scientists
(B) from JSPS (Y.S.).
(13) If aryl radical species were involved, cyclization to
dihydrobenzofuran 9 should have been faster than intermolecular
addition to allenes. See: Lockner, J. W.; Dixon, D. D.; Risgaard, R.;
Baran, P. S. Org. Lett. 2011, 13, 5628−5631.
(14) Paderes, M. C.; Belding, L.; Fanovic, B.; Dudding, T.; Keister, J.
B.; Chemler, S. R. Chem.Eur. J. 2012, 18, 1711−1726.
REFERENCES
■
(1) For reviews and recent reports on intramolecular carbooxyge-
nation of alkenes, see: (a) Wolfe, J. P. Synlett 2008, 2913−2937.
(b) Hayashi, S.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2009,
131, 2052−2053. (c) Zhang, G.; Wang, Y.; Zhang, L. J. Am. Chem. Soc.
2010, 132, 1474−1475. (d) Pathak, T. P.; Gligorich, K. M.; Welm, B.
E.; Sigman, M. S. J. Am. Chem. Soc. 2010, 132, 7870−7871. (e) Miller,
Y.; Miao, L.; Hosseini, A. S.; Chemler, S. R. J. Am. Chem. Soc. 2012,
134, 12149−12156. (f) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc.
2012, 134, 12462−12465. (g) Cahard, E.; Bremeyer, N.; Gaunt, M. J.
Angew. Chem., Int. Ed. 2013, 52, 9284−9288. For selected reports on
intermolecular three-component carbooxygenation of alkenes, see:
(h) Graham, T. H.; Jones, C. M.; Jui, N. T.; MacMillan, D. W. C. J.
Am. Chem. Soc. 2008, 130, 16494−16495. (i) Melhado, A. D.;
Brenzovich, W. E., Jr.; Lackner, A. D.; Toste, F. D. J. Am. Chem. Soc.
2010, 132, 8885−8887. (j) Hartmann, M.; Li, Y.; Studer, A. J. Am.
Chem. Soc. 2012, 134, 16516−16519. (k) Su, Y.; Sun, X.; Wu, G.; Jiao,
N. Angew. Chem., Int. Ed. 2013, 52, 9808−9812.
(2) For selected reports on intramolecular carbooxygenation of
alkynes, see: (a) Toh, K. K.; Sanjaya, S.; Sahnoun, S.; Chong, S. Y.;
Chiba, S. Org. Lett. 2012, 14, 2290−2292. (b) Hachiya, H.; Hirano, K.;
Satoh, T.; Miura, M. Org. Lett. 2011, 13, 3076−3079. (c) Yanagihara,
N.; Lambert, C.; Iritani, K.; Utimoto, K.; Nozaki, H. J. Am. Chem. Soc.
1986, 108, 2753−2754. (d) Luo, F.-T.; Schreuder, I.; Wang, R.-T. J.
Org. Chem. 1992, 57, 2213−2215. For selected reports on
intermolecular carbooxygenation of alkynes, see: (e) Suero, M. G.;
Bayle, E. D.; Collins, B. S. L.; Gaunt, M. J. J. Am. Chem. Soc. 2013, 135,
5332−5335. (f) Cuenca, A. B.; Montserrat, S.; Hossain, K. M.;
́ ́
Mancha, G.; Lledos, A.; Medio-Simon, M.; Ujaque, G.; Asensio, G.
Org. Lett. 2009, 11, 4906−4909. (g) Xu, Z.-F.; Cai, C.-X.; Liu, J.-T.
Org. Lett. 2013, 15, 2096−2099.
D
dx.doi.org/10.1021/ol501022d | Org. Lett. XXXX, XXX, XXX−XXX