Chemistry of Materials
Article
in the glovebox at a chamber pressure of ∼5.0 × 10−7 Torr. The active
area of the solar cell is 3.14 mm2, which is defined by the cathode area.
Current density−voltage (J−V) characteristics of the devices under
nitrogen were measured using a Keithley 238 Source Measure unit.
The photovoltaic properties were characterized under an Air Mass 1.5
Global (AM 1.5G) solar simulator with irradiation intensity of 100
mW/cm2.
FET Device Fabrication. Heavily doped Si substrates coated with
thermally grown 300 nm SiO2 were used as gate substrates (Silicon
Inc.). The substrate was cleaned by piranha treatment followed by
multiple rinsing with DI water, and then treated with octadecyltri-
chlorosilane (ODTS). 0.2−0.3 wt % solutions of the polymers (in
chloroform) were spin-coated on the ODTS-treated Si substrates. The
polymer films were annealed at 180 °C for 10 min to improve their
crystallinity. To complete top-contact polymer FET devices, Al was
thermally evaporated through a shadow mask, which forms 100 nm
thick source/drain electrodes (channel length/width (W/L) = 50 μm/
(1500 μm)). FET transfer characteristics were measured in the
saturation regime, and the FET mobility was calculated using the
REFERENCES
■
(1) Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater.
2001, 11, 15.
(2) Coakley, K. M.; McGehee, M. D. Chem. Mater. 2004, 16, 4533.
(3) Kraabel, B.; Lee, C. H.; McBranch, D.; Moses, D.; Sariciftci, N. S.;
Heeger, A. J. Chem. Phys. Lett. 1993, 213, 389.
(4) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science
1995, 270, 1789.
(5) Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.;
Friend, R. H.; Moratti, S. C.; Holmes, A. B. Nature 1995, 376, 498.
(6) Granstrom, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson, M.
R.; Friend, R. H. Nature 1998, 395, 257.
(7) Kim, Y.; Cook, S.; Choulis, S. A.; Nelson, J.; Durrant, J. R.;
Bradley, D. D. C. Chem. Mater. 2004, 16, 4812.
(8) Alam, M. M.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4647.
(9) Zhan, X.; Tan, Z.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.; Li,
Y.; Zhu, D.; Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2007, 129,
7246.
(10) Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.-T.; Wu, Y.; Li, G.; Ray, C.; Yu,
L. Adv. Mater. 2010, 22, E135.
(11) Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J.
S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Nat. Photonics 2009,
3, 297.
following equation by fitting experimental values: ID
=
μCiW(2L)−1(VG − VTh)2, where Ci and VTh are the capacitance per
unit area of the gate dielectrics and the threshold voltage, respectively.
All of the fabrication steps and electrical measurements were
performed in a N2-filled glovebox (O2/H2O < 0.1 ppm)
(12) Dou, L.; You, J.; Yang, J.; Chen, C.-C.; He, Y.; Murase, S.;
Moriarty, T.; Emery, K.; Li, G.; Yang, Y. Nat. Photonics 2012, 6, 180.
(13) Zhou, N.; Guo, X.; Ortiz, R. P.; Li, S.; Zhang, S.; Chang, R. P.
H.; Facchetti, A.; Marks, T. J. Adv. Mater. 2012, 24, 2242.
(14) Small, C. E.; Chen, S.; Subbiah, J.; Amb, C. M.; Tsang, S.-W.;
Lai, T.-H.; Reynolds, J. R.; So, F. Nat. Photonics 2012, 6, 115.
(15) Meager, I.; Ashraf, R. S.; Mollinger, S.; Schroeder, B. C.;
Bronstein, H.; Beatrup, D.; Vezie, M. S.; Kirchartz, T.; Salleo, A.;
Nelson, J.; McCulloch, I. J. Am. Chem. Soc. 2013, 135, 11537.
(16) Lei, T.; Dou, J.-H.; Cao, X.-Y.; Wang, J.-Y.; Pei, J. J. Am. Chem.
Soc. 2013, 135, 12168.
(17) Yuen, J. D.; Fan, J.; Seifter, J.; Lim, B.; Hufschmid, R.; Heeger,
A. J.; Wudl, F. J. Am. Chem. Soc. 2011, 133, 20799.
(18) Zhan, X.; Facchetti, A.; Barlow, S.; Marks, T. J.; Ratner, M. A.;
Wasielewski, M. R.; Marder, S. R. Adv. Mater. 2011, 23, 268.
(19) Nielsen, C. B.; Turbiez, M.; McCulloch, I. Adv. Mater. 2013, 25,
1859.
ASSOCIATED CONTENT
■
S
* Supporting Information
Scheme showing synthesis of monomers, text describing the
syntheses, general procedure for polymerization, and mobility
measurements, figures showing NMR spectra of compounds 6,
7, 13, 14, NDI, EDOT, SW, and TDP, MALDI-TOF mass
spectra of compounds 6, 7, 13, and 14, TGA thermograms of
polymers, HOMO and LUMO diagrams of the four polymer
repeating units and of the monomers, HOMO and LUMO
energy level diagrams, absorption, cyclic voltammograms of the
monomers, linecuts of neat electron accepting polymers, plots
of J−V characteristics, and AFM images, and a table listing
electrochemical properties of select polymers. This material is
(20) Lei, T.; Dou, J.-H.; Cao, X.-Y.; Wang, J.-Y.; Pei, J. Adv. Mater.
2013, 25, 6589.
AUTHOR INFORMATION
(21) Lei, T.; Xia, X.; Wang, J.-Y.; Liu, C.-J.; Pei. J. Am. Chem. Soc.
2014, 136, 2135.
(22) Li, H.; Kim, F. S.; Ren, G.; Jenekhe, S. A. J. Am. Chem. Soc. 2013,
■
Corresponding Author
135, 14920.
(23) Earmme, T.; Hwang, Y.-J.; Murari, N. M.; Subramaniyan, S.;
Jenekhe, S. A. J. Am. Chem. Soc. 2013, 135, 14960.
(24) Zhou, E.; Cong, J.; Hashimoto, K.; Tajima, K. Adv. Mater. 2013,
25, 6991.
(25) Cao, Y.; Lei, T.; Yuan, J.; Wang, J.-Y.; Pei, J. Polym. Chem. 2013,
4, 5228.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work is supported by a U.S. National Science Foundation
Grant (NSF DMR-1263006), the Air Force Office of Scientific
Research and NSF MRSEC program at the University of
Chicago (Grant DMR-0213745), Department of Energy
(DOE) via the ANSER Center, an Energy Frontier Research
Center funded by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Award No. DE-
SC0001059. W.C. gratefully acknowledges financial support
from the U.S. Department of Energy, Office of Science, Office
of Basic Energy Sciences, under Award No. KC020301. We also
thank Dr. Joseph Strzalka and Dr. Zhang Jiang for the
assistance with GISAXS measurements. Use of the Advanced
Photon Source (APS) at Argonne National Laboratory was
supported by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, under Contract No. DE-AC02-
06CH11357.
(26) Cheng, P.; Ye, L.; Zhao, X.; Hou, J.; Li, Y.; Zhan, X. Energy
Environ. Sci. 2014, 7, 1351.
(27) Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz,
F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679.
(28) Zhou, N.; Lin, H.; Lou, S. J.; Yu, X.; Guo, P.; Manley, E. F.;
Loser, S.; Hartnett, P.; Huang, H.; Wasielewski, M. R.; Chen, L. X.;
Chang, R. P. H.; Facchetti, A.; Marks, T. J. Adv. Energy Mater. 2014, 4,
1300785.
(29) Mori, D.; Benten, H.; Okada, I.; Ohkita, H.; Ito, S. Adv. Energy
Mater. 2014, 4, 1301006.
(30) Steyrleuthner, R.; Schubert, M.; Jaiser, F.; Blakesley, J. C.; Chen,
Z.; Facchetti, A.; Neher, D. Adv. Mater. 2010, 22, 2799.
(31) Li, W.; Roelofs, W. S. C.; Turbiez, M.; Wienk, M. M.; Janssen,
R. A. J. Adv. Mater. 2014, DOI: 10.1002/adma 201305910.
(32) Facchetti, A. Mater. Today 2013, 16, 123.
(33) Marcus, R. A. J. Chem. Phys. 1956, 24, 966.
(34) Piotrowiak, P. Chem. Soc. Rev. 1999, 28, 143.
I
dx.doi.org/10.1021/cm500832h | Chem. Mater. XXXX, XXX, XXX−XXX