10.1002/anie.202003698
Angewandte Chemie International Edition
COMMUNICATION
as solvent). The SDD basis set with an Effective Core Potential
(ECP)13 was used for the Au atom, the 6-311+G** basis set for
the P atom, and the 6-31+G** basis set for the other atoms. As
shown in Figure 2, the C-H insertion starts from the β-diketone-α-
gold carbene intermediate A-3k. The calculated transition state,
i.e., TS-Ins-3k, for the formation of the cyclobutanone 3k is 6.9
kcal/mol higher in free energy. This number is 1.1 kcal/mol more
favorable than TS-Ins-8, which is 8.0 kcal/mol higher in free
energy than A-3k and leads to the formation of the
cyclopentanone 8. This result is in line with the experiment
observation, in which 8 is barely formed.
In A-3k, there are steric repulsions between the carbene
fragment and the large AdBrettPhos ligand, which are at least in
part responsible for the compressed angle of P-Au-C1. This angle
is measured at 150.66˚ and substantially bended and deviated
from typical ~180˚. In the transition states, the Au carbene bond
(i.e., Au=C1) length increases from 2.015 Å in A-3k to 2.076 Å in
TS-Ins-3k and 2.073 Å in TS-Ins-8, which are concurrent to the
References:
[1] Y. Wang, Z. Zheng, L. Zhang, J. Am. Chem. Soc. 2015, 137, 5316–5319.
[2]
(a) L. Zhang, Acc. Chem. Res. 2014, 47, 877–888; (b) Z. Zheng, Z. Wang,
Y. Wang, L. Zhang, Chem. Soc. Rev. 2016, 45, 4448-4458; (c) L. Zhang,
in Contemporary Carbene Chemistry (Eds.: R. A. Moss, M. P. Doyle),
John Wiley & Sons, 2013; (d) J. Xiao, X. Li, Angew. Chem., Int. Ed. 2011,
50, 7226-7236.
[3]
(a) M. P. Doyle, M. A. McKervey, T. Ye, Modern catalytic methods for
organic synthesis with diazo compounds: from cyclopropanes to ylides,
Wiley, New York, 1998; (b) F. Z. Dörwald, Metal carbenes in organic
synthesis, Wiley-VCH, Weinheim; New York, 1999; (c) H. M. L. Davies, X.
Dai, in Comprehensive Organometallic Chemistry III (Eds.: D. M. P.
Mingos, R. H. Crabtree), Elsevier, Oxford, 2007, pp. 167-212; (d) D. F.
Taber, in Carbon-Carbon σ-Bond Formation, Vol. 3 (Ed.: G. Pattenden),
Pergamon Press, Oxford, England ; New York, 1991, pp. 1045-1062.
relaxation of the ∠P-Au-C1 bending but to different extents. The
[4]
[5]
(a) T. Seiser, T. Saget, D. N. Tran, N. Cramer, Angew. Chem. Int. Ed.
2011, 50, 7740-7752; (b) D. J. Mack, J. T. Njardarson, ACS Catal. 2013,
3, 272-286; (c) J.-i. Matsuo, Tetrahedron Lett. 2014, 55, 2589-2595.
angle in TS-Ins-3k expands to 156.66˚, but to a notably smaller
152.41˚ in TS-Ins-8. This difference reflects that the C-H insertion
to form the cyclobutanone 3k is less sterically demanding than
that leading to the cyclopentanone 8 and hence experiences less
steric repulsion from the bulky ligand 2,4,6-triisopropylphenyl
group. It is also in line with the difference in the distance between
C6, i.e., the para-carbon on the ligand pendant benzene ring, and
(a) J. Marrero, A. D. Rodríguez, P. Baran, R. G. Raptis, J. A. Sánchez, E.
Ortega-Barria, T. L. Capson, Org. Lett. 2004, 6, 1661-1664; (b) N. Tanaka,
M. Okasaka, Y. Ishimaru, Y. Takaishi, M. Sato, M. Okamoto, T. Oshikawa,
S. U. Ahmed, L. M. Consentino, K.-H. Lee, Org. Lett. 2005, 7, 2997-2999.
the carbene carbon. In TS-Ins-3k, the distance is 4.339 Å, while
in TS-Ins-8, it is 4.686 Å. The more bended ∠P-Au-C1 in TS-Ins-
[6]
(a) E. Wenkert, L. L. Davis, B. L. Mylari, M. F. Solomon, R. R. Da Silva,
S. Shulman, R. J. Warnet, P. Ceccherelli, M. Curini, R. Pellicciari, J. Org.
Chem. 1982, 47, 3242-3247; (b) D. E. Cane, P. J. Thomas, J. Am. Chem.
Soc. 1984, 106, 5295-5303; (c) S.-i. Hashimoto, T. Shinoda, Y. Shimada,
T. Honda, S. Ikegami, Tetrahedron Lett. 1987, 28, 637-640; (d) H. R.
Sonawane, N. S. Bellur, J. R. Ahuja, D. G. Kulkarni, J. Org. Chem. 1991,
56, 1434-1439; (e) P. Ceccherelli, M. Curini, M. C. Marcotullio, O. Rosati,
Tetrahedron 1991, 47, 7403-7408; (f) A. Padwa, F. R. Kinder, J. Org.
Chem. 1993, 58, 21-28; (g) L. N. Mander, A. P. Wells, Tetrahedron Lett.
1997, 38, 5709-5712; (h) H.-X. Huang, S.-J. Jin, J. Gong, D. Zhang, H.
Song, Y. Qin, Chem. Eur. J. 2015, 21, 13284-13290.
8 is consistent with its being higher in energy, which in turn
support the role of ligand bulk in enabling regioselective C-H
insertions, leading to preferentially formation of cyclobutanone
products via a sterically less demanding transition state.
In summary, we have exploited the C(sp3)-H insertion
chemistry of oxidatively-generated gold carbenes for the
generation of strained cyclobutanones. The method avoids the
use of diazo precursors and can be highly efficient and applied to
the synthesis of fused bicyclic cyclobutanes. Comparative studies
with rhodium-catalyzed decomposition of α-diazo-β-diketones
strongly suggested the key role of β-diketone-α-gold carbene in
this transformation and reveal that this oxidative gold catalysis is,
in general, more facile. DFT studies lend further support to the
carbene pathway and shed lights on how bulky ligands are
essential to achieve regioselective C-H insertions. By forming
these highly strained cycles, this chemistry confirms the
exceptional reactivity of these carbene species and offers facile
access to synthetically valuable cyclobutanones.
[7] Y. Zheng, J. Zhang, X. Cheng, X. Xu, L. Zhang, Angew. Chem., Int. Ed.
2019, 58, 5241-5245.
[8]
(a) G. Stork, N. Kazuhiko, Tetrahedron Lett. 1988, 29, 2283-2286; (b) J.-
H. Chen, S. R. Levine, J. F. Buergler, T. C. McMahon, M. R. Medeiros, J.
L. Wood, Org. Lett. 2012, 14, 4531-4533.
[9] (a) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864-B871. (b) Kohn,
W.; Sham, L. J. Phys. Rev. 1965, 140, A1133-A1138.
[10] (a) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2006, 110, 13126. (b) Zhao,
Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101; (c) Zhao, Y.; Truhlar,
D. G. Theor. Chem. Acc. 2008, 120, 215.
Acknowledgments
[11] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.
A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.;
Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.;
Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.;
Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.;
Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.;
Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.;
Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.;
Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts,
R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;
Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G.
A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas,
The experimental work by Z. Z., Y. W. And L.Z. was supported by
NIGMS R01GM123342 and NIH shared instrument grant
S10OD012077 for the purchase of a 400 MHz NMR spectrometer.
The DFT studies by Y.-X. L. is supported by the Natural Science
Foundation of China (Grant No. 21672247).
Keywords: gold carbene• catalysis • cyclobutanone • oxidation •
C-H insertion
4
This article is protected by copyright. All rights reserved.