Paper
2-Butene-1-ol 2,3,4,6-tetra-O-acetyl-b-D-galactopyranoside (d).
RSC Advances
Benzoyl 2,3,4,6-tetra-O-acetyl-b-D-galactopyranoside (i). Yield
White solid; yield 94%; Rf ¼ 0.3 (EtOAc–Pet ether ¼ 1 : 1); H 93%; Rf ¼ 0.2 (EtOAc–Pet ether ¼ 1 : 2); 1H NMR (400 Hz,
NMR (CDCl3, 400 MHz) d 2.01 (s, 3H), 2.03 (s, 3H), 2.06 (s, 3H), CDCl3): d ¼ 8.07 (d, 2H, J ¼ 7.2 Hz), 7.61 (t, 1H, J ¼ 7.6 Hz), 7.47
2.10 (s, 3H), 3.69–3.70 (m, 1H), 4.15–4.21 (m, 3H), 4.24 (d, J ¼ 4.5 (t, 2H, J ¼ 7.6 Hz), 5.94 (d, 1H, J ¼ 8.0 Hz), 5.55 (dd, 1H, J1 ¼ 8.4
Hz, 1H), 4.28 (t, J ¼ 5.9 Hz, 1H), 4.32 (bs, 1H), 4.35–4.39 (m, 1H), Hz, J2 ¼ 10.4 Hz), 5.50 (d, 1H, J ¼ 3.2 Hz), 5.21 (dd, 1H, J1 ¼ 3.6
4.58 (d, J ¼ 7.7 Hz, 1H), 4.98–5.03 (m, 1H), 5.09 (t, J ¼ 9.6 Hz, Hz, J2 ¼ 10.8 Hz), 4.24–4.14 (m, 3H), 2.20 (s, 3H), 2.05 (s, 3H),
1H), 5.21 (t, J ¼ 9.6 Hz, 1H), 5.6–5.67 (m, 1H), 5.83–5.89 (m, 1H); 2.03 (s, 3H), 2.00 (s, 3H) ppm. 13C NMR (125 Hz, CDCl3): d ¼
13C NMR (CDCl3, 50 MHz) d 20.6, 20.7, 20.73, 58.5, 61.9, 64.3, 170.1, 170.0, 169.7, 169.3, 164.4, 133.8, 130.0, 128.6, 128.4, 92.6,
68.4, 71.2, 71.7, 72.7, 99.2, 126.7, 133.3, 169.4, 169.4, 170.3, 71.6, 70.5, 67.7, 66.8, 60.9, 20.42, 20.35 ppm. HRMS (ESI) m/z
170.8; HRMS (ESI) m/z [M + Na]+ calcd for C18H26O11Na 441.13, [M + Na]+ calcd for C21H24NaO11 475.11. Found 474.80.
1
found 441.10.
Cyclohexyl 2,3,4,6-tetra-O-acetyl-b-D-galactopyranoside (j).
1
1-Decyl 2,3,4,6-tetra-O-acetyl-b-D-galactopyranoside (e). White White solid; yield 93%; Rf ¼ 0.2 (EtOAc–Pet ether ¼ 1 : 2); H
solid; yield 98%; Rf ¼ 0.6 (EtOAc–Pet ether ¼ 1 : 2); 1H NMR NMR (CDCl3, 400 MHz) d 1.24–1.26 (m, 4H), 1.38–1.48 (m, 2H),
(CDCl3, 400 MHz) d 0.87 (t, 3H), 1.24 (m, 18H), 1.5–1.59 (m, 2H), 1.64–1.77 (m, 3H), 1.83–1.86 (m, 1H), 1.99 (s, 3H), 2.01 (s, 3H),
2.0 (s, 3H), 2.2 (s, 3H), 2.4 (s, 3H), 2.8 (s, 3H), 3.43–3.49 (m, 1H), 2.02 (s, 3H), 2.07 (s, 3H), 3.58–3.63 (m, 1H), 3.64–3.69 (m, 1H),
3.67–3.71 (m, 1H), 3.84–3.89 (m, 1H), 4.11–4.14 (m, 1H), 4.26 4.10 (dd, J ¼ 11.9 and 2.3 Hz, 1H), 4.25 (dd, J ¼ 11.9 and 4.5 Hz,
(dd, J ¼ 7.8 and 4.6 Hz, 1H), 4.49 (d, J ¼ 7.8, 1H), 4.97 (dd, J ¼ 8, 1H), 4.57 (d, J ¼ 7.8 Hz, 1H), 4.95 (dd, J ¼ 9.6 and 8.2 Hz, 1H),
1.4 Hz, 1H), 5.08 (t, J ¼ 9.7, 9.5 Hz), 5.2 (t, J ¼ 9.5, 9.2 Hz, 1H); 5.07 (t, J ¼ 9.6 Hz, 1H), 5.19 (t, J ¼ 9.6 Hz, 1H); 13C NMR (CDCl3,
13C NMR (CDCl3, 100 MHz) d 14.2, 20.5, 22.5, 25.7, 29.2, 29.5, 50 MHz) d 20.6, 20.65, 20.68, 20.7, 23.5, 23.6, 25.4, 31.5, 33.1,
31.7, 61.8, 68.3, 70.2, 71.2, 71.5, 72.7, 100.7, 169.3, 169.4, 170.3, 62.0, 68.5, 71.4, 71.5, 72.8, 78.0, 99.3, 169.2, 169.4, 170.3, 170.7;
170.7; HRMS (ESI) m/z [M + Na]+ calcd for C25H42O10Na 525.26, HRMS (ESI) m/z [M + Na]+ calcd for C20H30O10Na 453.1737,
found 524.80.
found 452.20.
2-Isopropyl-5-methyl cyclohexyl 2,3,4,6-tetra-O-acetyl-b-D-gal-
actopyranoside (f). White solid; yield 94%; Rf ¼ 0.5 (EtOAc–Pet
3. Results and discussion
3.1. FT-IR analysis and acidity determination of the solid
1
ether ¼ 1 : 2); H NMR (CDCl3, 400 MHz) d 0.73 (d, J ¼ 4.6 Hz,
3H), 0.85 (s, 3H), 0.89 (d, J ¼ 1.7 Hz, 3H), 0.91–0.93 (m, 2H),
1.14–1.41 (m, 4H), 1.55–1.72 (m, 5H), 2.01 (s, 3H), 2.03 (s, 3H),
2.06 (s, 3H), 2.08 (s, 3H), 3.25–3.45 (m, 1H), 3.63–3.76 (m, 1H),
4.07–4.28 (m, 2H), 4.56 (d, J ¼ 7.9 Hz, 1H), 4.97 (dd, J ¼ 9.7 and
3.6 Hz, 1H), 5.07 (dd, J ¼ 8.9 and 2.2 Hz, 1H), 5.21 (t, J ¼ 9.4 Hz,
1H); 13C NMR (CDCl3, 50 MHz) d 15.4, 15.9, 20.5, 20.6, 20.7,
20.9, 21.0, 22.3, 22.8, 25.0, 31.4, 31.6, 34.0, 34.1, 40.8, 42.8, 47.4,
48.0, 62.4, 68.7, 68.9, 71.5, 71.6, 73.0, 79.1, 83.1, 98.7, 101.9,
169.3, 169.5, 170.4, 170.2; HRMS (ESI) m/z [M + Na]+ calcd for
acid catalysts
The Fourier transform infrared spectra of PV-THEAC, PV-DEA
and PVC are shown in Fig. 1. The absorption bands in pure
polyvinyl chloride are identied by the vibration bands at 750
cmꢀ1, 1398 cmꢀ1 and 3137 cmꢀ1 for C–Cl, C–C and C–H,
respectively. When diethanol amine is bound to polyvinyl
chloride, the C–Cl vibration band at 750 cmꢀ1 disappears. In
additon, the C–N, –OH and C–O vibration bands at 1247 cmꢀ1
,
3409 cmꢀ1 and 957 cmꢀ1 appeared in the FT-IR spectra (Fig. 1A).
Moreover, polyvinyl chloride bound to triethanol amine is
identied by vibration bands at 1247 cmꢀ1, 957 cmꢀ1 and 3409
cmꢀ1 for C–N, C–O and –OH functionalized groups, respec-
tively.27 The spectra for PV-TSEAC and PV-DSEA have vibration
bands at 1169 cmꢀ1 and 1038 cmꢀ1, which are associated with
C
24H38O10Na 509.23, found 508.80.
1-Adamantanylmethyl 2,3,4,6-tetra-O-acetyl-b-D-galactopyrano-
side (g). White solid; yield 97%; Rf ¼ 0.6 (EtOAc–Pet ether ¼
1 : 1); 1H NMR (CDCl3, 400 MHz) d 1.48–1.52 (m, 3H), 1.58–1.74
(m, 12H), 2.02 (s, 3H), 2.03 (s, 3H), 2.06 (s, 3H), 2.10 (s, 3H), 2.97
(d, J ¼ 9.4 Hz, 1H), 3.51 (d, J ¼ 9.4 Hz, 1H), 3.63–3.71 (m, 1H),
4.16 (dd, J ¼ 9.4 Hz, 1H), 4.28 (dd, J ¼ 7.7 and 4.5 Hz, 1H), 4.43
(d, J ¼ 7.7 Hz, 1H), 5.01 (dd, J ¼ 9.4 and 4.8 Hz, 1H), 5.09 (t, J ¼
9.47 Hz, 1H), 5.21 (t, J ¼ 9.3 Hz, 1H); 13C NMR (CDCl3, 50 MHz)
d 20.6, 20.68, 20.7, 28.0, 33.8, 37.0, 39.2, 61.9, 68.4, 71.2, 71.6,
72.7, 80.9, 101.7, 169.2, 169.4, 170.3, 170.7; HRMS (ESI) m/z [M +
Na]+ calcd for C25H36O10Na 519.22, found 519.01.
(Z)-Octadec-9-enyl 2,3,4,6-tetra-O-acetyl-b-D-galactopyranoside
(h). White solid; yield 82%; Rf ¼ 0.3 (EtOAc–Pet ether ¼ 1 : 2); 1H
NMR (CDCl3, 400 MHz) d 0.89 (t, 3H), 1.26 (bs, 24H), 1.5–1.67
(m, 4H), 2.01 (s, 3H), 2.03 (s, 3H), 2.05 (s, 3H), 2.09 (s, 3H), 3.44–
3.5 (m, 1H), 3.67–3.72 (m, 1H), 3.85–3.90 (m, 1H), 4.14 (dd, J ¼
9.7 and 2.4 Hz, 1H), 4.5 (d, J ¼ 8 Hz, 1H), 4.99 (dd, J ¼ 7.8 and 1.4
Hz, 1H), 5.1 (t, J ¼ 9.7 Hz, 1H), 5.21 (t, J ¼ 9.5 Hz, 1H), 5.34–5.37
(m, 1H); 13C NMR (CDCl3, 100 MHz) d 14.2, 20.1, 20.68, 21.7,
28.0, 33.8, 37.5, 39.2, 61.9, 68.4, 71.2, 71.6, 72.7, 80.9, 103.7,
169.2, 169.4, 170.5, 170.1.
ꢀ
the stretching frequency of O]S]O and the SO3 stretching
mode in the SO3H group respectively (Fig. 2).
Yang and Kou et al. determined the Lewis and Brønsted
acidity of solid acids through monitoring the shi of the IR
absorption bands at 1438 cmꢀ1 and 1540 cmꢀ1 in pyridine.28
Generally, pyridine adsorbed complexes show two major
absorption peaks at 1438 cmꢀ1 and 1548 cmꢀ1 analogous to
Lewis and Brønsted acidity, respectively. This method implies
that the presence of a band occurring at 1437 cmꢀ1 in pure
pyridine is shied nearly to 1450 cmꢀ1 which indicates that
pyridine is coordinated to Lewis acid sites. Meanwhile, the new
band which appeared near 1541 cmꢀ1 is an indication of pyr-
idinium ions resulting from the presence of Brønsted acidic
sites. In this regard, the results of the pyridine adsorption
spectra of the PV-TSEAC and PV-DSEA catalysts and pure pyri-
dine are shown in Fig. 3. It can be seen that the results for the
PV-TSEAC and PV-DSEA catalysts show the new vibration band
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 104715–104724 | 104717