References and notes
1.
2.
Kanwal, R.; Gupta, S. “Epigenetic modifications in cancer” Clin Genet.
2012, 81(4), 303.
Black, J.C.; Van Rechem, C.; Whetstine, J.R. “Histone lysine
methylation dynamics: establishment, regulation, and biological impact”
Mol Cell. 2012, 48(4), 491.
3.
4.
Helin, K.; Dhanak, D. “Chromatin proteins and modifications as drug
targets” Nature. 2013, 502(7472), 480.
Blair, L.P.; Cao, J.; Zou, M.R.; Sayegh, J.; Yan, Q. “Epigenetic
Regulation by Lysine Demethylase 5 (KDM5) Enzymes in Cancer”
Cancers. 2011, 3(1):1383.
5.
6.
Rasmussen, P.B.; Staller, P. “The KDM5 family of histone
demethylases as targets in oncology drug discovery”. Epigenomics.
2014, 6(3):277.
Lin, W.; Cao, J.; Liu, J.; Beshiri, M.L.; Fujiwara, Y.; Francis, J.;
Cherniack, A.D.; Geisen, C.; Blair, L.P.; Zou, M.R.; Shen, X.;
Kawamori, D.; Liu, Z.; Grisanzio, C.; Watanabe, H.; Minamishima,
Y.A.; Zhang, Q.; Kulkarni, R.N.; Signoretti, S.; Rodig, S.J.; Bronson
R.T.; Orkin, S.H.; Tuck, D.P. Benevolenskaya, E.V.; Meyerson, M.;
Kaelin, W.G Jr.; Yan, Q. “Loss of the retinoblastoma binding protein 2
(RBP2) histone demethylase suppresses tumorigenesis in mice lacking
Rb1 or Men1” Proc Natl Acad Sci U S A. 2011, 108(33):13379.
Sharma, S.V.; Lee, D.Y.; Li, B.; Quinlan, M.P.; Takahashi, F.;
Maheswaran, S.; McDermott, U.; Azizian, N.; Zou, L.; Fischbach,
M.A.; Wong, K.K.; Brandstetter, K.; Wittner, B.; Ramaswamy, S.;
Classon, M.; Settleman, J. “A chromatin-mediated reversible drug-
tolerant state in cancer cell subpopulations.” Cell. 2010, 141(1):69.
Roesch, A.;, Fukunaga-Kalabis, M.; Schmidt, E.C.; Zabierowski, S.E.;
Brafford, P.A.; Vultur, A.; Basu, D.; Gimotty, P.; Vogt, T.; Herlyn, M.;
“A temporarily distinct subpopulation of slow-cycling melanoma cells is
required for continuous tumor growth”. Cell. 2010, 141(4):583.
Roesch, A.; Vultur, A.; Bogeski, I.; Wang, H.; Zimmermann, K.M.;
Speicher, D.; Körbel, C.; Laschke, M.W.; Gimotty, P.A.; Philipp, S.E.;
Krause, E.; Pätzold, S.; Villanueva, J.; Krepler, C.; Fukunaga-Kalabis,
M.; Hoth, M.; Bastian, B.C.; Vogt, T.; Herlyn, M. “Overcoming
intrinsic multidrug resistance in melanoma by blocking the
mitochondrial respiratory chain of slow-cycling JARID1B(high) cells”
Cancer Cell. 2013, 23(6):811.
Figure 3. Mouse in vivo PK/PD experiment (MCF-7). Breast cancer cell
line MCF-7 tumor cells were inoculated into female nude mice. When
average tumor size reached about 350 mm3, mice were treated orally with
vehicle twice a day or with 75 mg/kg Compound 33 once a day for 5 days. At
0.5, 1, 4, and 24 hours post final dose, tumors were resected, drug
concentrations in tumors were measured and the level of H3K4me3 (n=3 for
each time point) was determined with Western blot using an antibody specific
to the tri-methylated state (Cell Signaling Technologies) and quantified on an
infrared imager using a densitometry software package (Odyssey CLx, Image
Studio, Li-Cor). The time course of drug concentrations (µM) and the level of
H3K4me3 were plotted.
7.
8.
9.
Because of its potency in in vitro biochemical and cellular
assays and suitable oral PK properties, compound 33 was selected
for in vivo PK/PD study in a human breast cancer xenograft
model (MCF-7) using female nude mice. Compound 33 at 75
mg/kg induced H3K4me3 increases (Figure 3). The induction of
H3K4me3 level was over 2 fold at the 0.5 hour time point,
reaching a maximum level of over 4 fold of the vehicle control at
the 1 hour time point where the concentration of compound 33
also reached the highest level. The induction level of H3K4me3
was sustained until the 24 hour time point even though a very low
concentration of compound 33 was detected.
10. Vinogradova, M.; Gehling, V.S.; Gustafson, A.; Arora, S.; Tindell,
C.A.; Wilson, C.; Williamson, K.E.; Guler, G.D.; Gangurde, P.;
Manieri, W.; Busby, J.; Flynn, E.M.; Lan, F.; Kim, H.J.; Odate, S.;
Cochran, A.G.; Liu, Y.; Wongchenko, M.; Yang, Y.; Cheung, T.K.;
Maile, T.M.; Lau, T.; Costa, M.; Hegde, G.V.; Jackson, E.; Pitti, R.;
Arnott, D.; Bailey, C.; Bellon, S.; Cummings, R.T.; Albrecht, B.K.;
Harmange, J.C.; Kiefer, J.R.; Trojer, P.; Classon, M. “An inhibitor of
KDM5 demethylases reduces survival of drug-tolerant cancer cells” Nat
Chem Biol. 2016, 12(7):531.
11. McAllister, T.E.; England, K.S.; Hopkinson, R.J.; Brennan, P.E.;
Kawamura, A.; Schofield, C.J. “Recent Progress in Histone
Demethylase Inhibitors.” J. Med. Chem. 2016, 59(4):1308.
12. Liang, J.; Zhang, B.; Labadie, S.; Ortwine, D.F;, Vinogradova, M.;
Kiefer, J.R.; Gehling, V.S.; Harmange, J.C.; Cummings, R.; Lai, T.;
Liao, J.; Zheng, X.; Liu, Y.; Gustafson, A.; Van der Porten, E.; Mao,
W.; Liederer, B.M.; Deshmukh, G.; Classon, M.; Trojer, P.; Dragovich,
P.S.; Murray, L. “Lead optimization of a pyrazolo[1,5-a]pyrimidin-
7(4H)-one scaffold to identify potent, selective and orally bioavailable
KDM5 inhibitors suitable for in vivo biological studies.” Bioorg Med
Chem Lett. 2016, 26(16):4036.
13. Gehling, V.S.; Bellon, S.F.; Harmange, J.C.; LeBlanc, Y.; Poy, F.;
Odate, S.; Buker, S.; Lan, F.; Arora, S.; Williamson, K.E.; Sandy, P.;
Cummings, R.T.; Bailey, C.M.; Bergeron, L.; Mao, W.; Gustafson, A.;
Liu, Y.; VanderPorten, E.; Audia, J.E.; Trojer, P.; Albrecht, B.K.;
“Identification of potent, selective KDM5 inhibitors.” Bioorg Med
Chem Lett. 2016, 26(17):4350.
14. Labadie, S.S.; Dragovich, P.S.; Cummings, R.T.; Deshmukh, G.;
Gustafson, A.; Han, N.; Harmange, J.C.; Kiefer, J.R.; Li, Y.; Liang, J.;
Liederer, B.M.; Liu, Y.; Manieri, W.; Mao, W.; Murray, L.; Ortwine,
D.F.; Trojer, P.; VanderPorten, E.; Vinogradova, M.; Wen, L. “Design
and evaluation of 1,7-naphthyridones as novel KDM5 inhibitors.”
Bioorg Med Chem Lett. 2016, 26(18):4492.
In summary, we have identified
a novel series of
pyrazolylpyridines as potent KDM5A/5B inhibitors. The co-
crystal structure of compound 14 provided further guidance in
designing the benzyloxy pyrazolylpyridine series. Balancing
potency and physical properties resulted in the identification of
compound 33, an orally available, potent inhibitor of KDM5A/5B
with promising selectivity. Treatment with compound 33 caused
H3K4me3 increases both in vitro in a breast cancer cell line, ZR-
75-1, and in vivo in a MCF-7 breast cancer xenograft PK/PD
model.
*Corresponding author. Tel: +1-858-678-4010; e-mail:
cPresent address: Pfizer Inc.
dPresent address: Jecure Therapeutics.
Acknowledgments
The authors would like to acknowledge the contributions of
following scientists: Xiaobo Li and team at Sundia Meditech for
the syntheses of some of the inhibitors; Dongming Qian and team
at Viva Biotech for co-crystallization of inhibitors with KDM4A
and diffraction data collection. The author would also like to
thank Michael B. Wallace for reviewing and providing critical
comments for the manuscript.
15. Liang, J.; Labadie, S.; Zhang, B.; Ortwine, D.F.; Patel, S.; Vinogradova,
M.; Kiefer, J.R.; Mauer, T.; Gehling, V.S.; Harmange, J.C.; Cummings,
R.; Lai, T.; Liao, J.; Zheng, X.; Liu, Y.; Gustafson, A.; Van der Porten,
E.; Mao, W.; Liederer, B.M.; Deshmukh, G.; An, L.; Ran, Y.; Classon,
M.; Trojer, P.; Dragovich, P.S.; Murray, L. “From a novel HTS hit to
potent, selective, and orally bioavailable KDM5 inhibitors.” Bioorg Med
Chem Lett. 2017, 27(13):2974.