Journal of Medicinal Chemistry
Article
phosphine complex targeting thioredoxin reductase inhibits hepato-
cellular carcinoma in vivo. Chem. Sci. 2013, 4, 1979−1988.
(23) Oehninger, L.; Kuster, L. N.; Schmidt, C.; Munoz-Castro, A.;
Prokop, A.; Ott, I. A chemical-biological evaluation of rhodium(I) N-
heterocyclic carbene complexes as prospective anticancer drugs.
Chem.Eur. J. 2013, 19, 17871−17880.
inorganic and methylated arsenicals in rat and human cells. Arch.
Toxicol. 2000, 74, 289−299.
(42) Nakamuro, K.; Sayato, Y. Comparative studies of chromosomal
aberration induced by trivalent and pentavalent arsenic. Mutat. Res.
1981, 88, 73−80.
(43) Fang, J.; Lu, J.; Holmgren, A. Thioredoxin reductase is
irreversibly modified by curcumin: a novel molecular mechanism for
its anticancer activity. J. Biol. Chem. 2005, 280, 25284−25290.
(44) Arner, E. S.; Bjornstedt, M.; Holmgren, A. 1-Chloro-2,4-
dinitrobenzene is an irreversible inhibitor of human thioredoxin
reductase. Loss of thioredoxin disulfide reductase activity is
accompanied by a large increase in NADPH oxidase activity. J. Biol.
Chem. 1995, 270, 3479−3482.
(45) Du, Y.; Zhang, H.; Lu, J.; Holmgren, A. Glutathione and
glutaredoxin act as a backup of human thioredoxin reductase 1 to
reduce thioredoxin 1 preventing cell death by aurothioglucose. J. Biol.
Chem. 2012, 287, 38210−38219.
(46) Javvadi, P.; Hertan, L.; Kosoff, R.; Datta, T.; Kolev, J.; Mick, R.;
Tuttle, S. W.; Koumenis, C. Thioredoxin reductase-1 mediates
curcumin-induced radiosensitization of squamous carcinoma cells.
Cancer Res. 2010, 70, 1941−1950.
(47) Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: the next
generation. Cell 2011, 144, 646−674.
(48) Eguchi, R.; Fujimori, Y.; Takeda, H.; Tabata, C.; Ohta, T.;
Kuribayashi, K.; Fukuoka, K.; Nakano, T. Arsenic trioxide induces
apoptosis through JNK and ERK in human mesothelioma cells. J. Cell.
Physiol. 2011, 226, 762−768.
(49) Liu, L.; Trimarchi, J. R.; Navarro, P.; Blasco, M. A.; Keefe, D. L.
Oxidative stress contributes to arsenic-induced telomere attrition,
chromosome instability, and apoptosis. J. Biol. Chem. 2003, 278,
31998−32004.
(50) Bode, A.; Dong, Z. Apoptosis induction by arsenic: mechanisms
of action and possible clinical applications for treating therapy-resistant
cancers. Drug Resist. Updates 2000, 3, 21−29.
(24) Millet, R.; Urig, S.; Jacob, J.; Amtmann, E.; Moulinoux, J. P.;
Gromer, S.; Becker, K.; Davioud-Charvet, E. Synthesis of 5-nitro-2-
furancarbohydrazides and their cis-diamminedichloroplatinum com-
plexes as bitopic and irreversible human thioredoxin reductase
inhibitors. J. Med. Chem. 2005, 48, 7024−7039.
(25) Klossowski, S.; Muchowicz, A.; Firczuk, M.; Swiech, M.; Redzej,
A.; Golab, J.; Ostaszewski, R. Studies toward novel peptidomimetic
inhibitors of thioredoxin-thioredoxin reductase system. J. Med. Chem.
2012, 55, 55−67.
(26) Shen, S.; Li, X. F.; Cullen, W. R.; Weinfeld, M.; Le, X. C. Arsenic
binding to proteins. Chem. Rev. 2013, 113, 7769−7792.
(27) Sapra, A.; Thorpe, C. An arsenical-maleimide for the generation
of new targeted biochemical reagents. J. Am. Chem. Soc. 2013, 135,
2415−2418.
(28) Park, D.; Don, A. S.; Massamiri, T.; Karwa, A.; Warner, B.;
MacDonald, J.; Hemenway, C.; Naik, A.; Kuan, K. T.; Dilda, P. J.;
Wong, J. W.; Camphausen, K.; Chinen, L.; Dyszlewski, M.; Hogg, P. J.
Noninvasive imaging of cell death using an Hsp90 ligand. J. Am. Chem.
Soc. 2011, 133, 2832−2835.
(29) Huang, C.; Yin, Q.; Zhu, W.; Yang, Y.; Wang, X.; Qian, X.; Xu,
Y. Highly selective fluorescent probe for vicinal-dithiol-containing
proteins and in situ imaging in living cells. Angew. Chem., Int. Ed. 2011,
50, 7551−7556.
(30) Griffin, B. A.; Adams, S. R.; Tsien, R. Y. Specific covalent
labeling of recombinant protein molecules inside live cells. Science
1998, 281, 269−272.
(31) Lu, J.; Chew, E. H.; Holmgren, A. Targeting thioredoxin
reductase is a basis for cancer therapy by arsenic trioxide. Proc. Natl.
Acad. Sci. U.S.A. 2007, 104, 12288−12293.
(32) Zhang, L.; Duan, D.; Liu, Y.; Ge, C.; Cui, X.; Sun, J.; Fang, J.
Highly selective off-on fluorescent probe for imaging thioredoxin
reductase in living cells. J. Am. Chem. Soc. 2014, 136, 226−233.
(33) Duan, D.; Zhang, B.; Yao, J.; Liu, Y.; Sun, J.; Ge, C.; Peng, S.;
Fang, J. Gambogic acid induces apoptosis in hepatocellular carcinoma
SMMC-7721 cells by targeting cytosolic thioredoxin reductase. Free
Radical Biol. Med. 2014, 69, 15−25.
(34) Cai, W.; Zhang, B.; Duan, D.; Wu, J.; Fang, J. Curcumin
targeting the thioredoxin system elevates oxidative stress in HeLa cells.
Toxicol. Appl. Pharmacol. 2012, 262, 341−348.
(51) Chen, G. Q.; Zhu, J.; Shi, X. G.; Ni, J. H.; Zhong, H. J.; Si, G. Y.;
Jin, X. L.; Tang, W.; Li, X. S.; Xong, S. M.; Shen, Z. X.; Sun, G. L.; Ma,
J.; Zhang, P.; Zhang, T. D.; Gazin, C.; Naoe, T.; Chen, S. J.; Wang, Z.
Y.; Chen, Z. In vitro studies on cellular and molecular mechanisms of
arsenic trioxide (As2O3) in the treatment of acute promyelocytic
leukemia: As2O3 induces NB4 cell apoptosis with downregulation of
Bcl-2 expression and modulation of PML-RAR alpha/PML proteins.
Blood 1996, 88, 1052−1061.
(52) Budihardjo, I.; Oliver, H.; Lutter, M.; Luo, X.; Wang, X.
Biochemical pathways of caspase activation during apoptosis. Annu.
Rev. Cell Dev. Biol. 1999, 15, 269−290.
(35) Cai, W.; Zhang, L.; Song, Y.; Zhang, B.; Cui, X.; Hu, G.; Fang, J.
3,4,4′-Trihydroxy-trans-stilbene, an analogue of resveratrol, is a potent
antioxidant and cytotoxic agent. Free Radical Res. 2011, 45, 1379−
1387.
(36) Duan, D.; Zhang, B.; Yao, J.; Liu, Y.; Fang, J. Shikonin targets
cytosolic thioredoxin reductase to induce ROS-mediated apoptosis in
human promyelocytic leukemia HL-60 cells. Free Radical Biol. Med.
2014, 70, 182−193.
(37) Loiseau, P. M.; Lubert, P.; Wolf, J. G. Contribution of dithiol
ligands to in vitro and in vivo trypanocidal activities of dithiaarsanes
and investigation of ligand exchange in an aqueous solution.
Antimicrob. Agents Chemother. 2000, 44, 2954−2961.
(53) Nordberg, J.; Arner, E. S. Reactive oxygen species, antioxidants,
and the mammalian thioredoxin system. Free Radical Biol. Med. 2001,
31, 1287−1312.
(54) Saitoh, M.; Nishitoh, H.; Fujii, M.; Takeda, K.; Tobiume, K.;
Sawada, Y.; Kawabata, M.; Miyazono, K.; Ichijo, H. Mammalian
thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase
(ASK) 1. EMBO J. 1998, 17, 2596−2606.
(55) Mitchell, D. A.; Morton, S. U.; Fernhoff, N. B.; Marletta, M. A.
Thioredoxin is required for S-nitrosation of procaspase-3 and the
inhibition of apoptosis in Jurkat cells. Proc. Natl. Acad. Sci. U.S.A. 2007,
104, 11609−11614.
(56) Matthews, J. R.; Wakasugi, N.; Virelizier, J. L.; Yodoi, J.; Hay, R.
T. Thioredoxin regulates the DNA binding activity of NF-kappa B by
reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res.
1992, 20, 3821−3830.
(57) Anestal, K.; Prast-Nielsen, S.; Cenas, N.; Arner, E. S. Cell death
by SecTRAPs: thioredoxin reductase as a prooxidant killer of cells.
PLoS One 2008, 3, e1846.
(58) Anestal, K.; Arner, E. S. Rapid induction of cell death by
selenium-compromised thioredoxin reductase 1 but not by the fully
active enzyme containing selenocysteine. J. Biol. Chem. 2003, 278,
15966−15972.
(59) Oehninger, L.; Kuster, L. N.; Schmidt, C.; Munoz-Castro, A.;
Prokop, A.; Ott, I. A chemical−biological evaluation of rhodium(I) N-
(38) Stevenson, K. J.; Hale, G.; Perham, R. N. Inhibition of pyruvate
dehydrogenase multienzyme complex from Escherichia coli with mono-
and bifunctional arsenoxides. Biochemistry 1978, 17, 2189−2192.
(39) Heredia-Moya, J.; Kirk, K. L. An improved synthesis of arsenic−
biotin conjugates. Bioorg. Med. Chem. 2008, 16, 5743−5746.
(40) Sundberg, L.; Porath, J. Preparation of adsorbents for biospecific
affinity chromatography. I. Attachment of group-containing ligands to
insoluble polymers by means of bifuctional oxiranes. J. Chromatogr.
1974, 90, 87−98.
(41) Styblo, M.; Del Razo, L. M.; Vega, L.; Germolec, D. R.;
LeCluyse, E. L.; Hamilton, G. A.; Reed, W.; Wang, C.; Cullen, W. R.;
Thomas, D. J. Comparative toxicity of trivalent and pentavalent
H
dx.doi.org/10.1021/jm500221p | J. Med. Chem. XXXX, XXX, XXX−XXX