Journal of the American Chemical Society
Communication
(4) For a proposed C−B oxidative addition to Ni(0) in the
hydroarylation of internal alkynes with arylboronates, see: Shirakawa,
E.; Takahashi, G.; Tsuchimoto, T.; Kawakami, Y. Chem. Commun. 2001,
2688.
and the concerted nature of the final elimination step is
responsible for the anti stereochemistry of the carboboration.
The trisubstituted alkenylborane obtained by the phosphine-
catalyzed carboboration was used to demonstrate the synthetic
utility (eq 3). Although attempts at direct Suzuki−Miyaura
(5) For selected papers from our group on transition metal catalyzed
reactions with organoboron compounds, see: (a) Ohmiya, H.; Makida,
Y.; Tanaka, T.; Sawamura, M. J. Am. Chem. Soc. 2008, 130, 17276.
(b) Ohmiya, H.; Makida, Y.; Li, D.; Tanabe, M.; Sawamura, M. J. Am.
Chem. Soc. 2010, 132, 879. (c) Ohmiya, H.; Yokobori, U.; Makida, Y.;
Sawamura, M. J. Am. Chem. Soc. 2010, 132, 2895. (d) Nagao, K.;
Yokobori, U.; Makida, Y.; Ohmiya, H.; Sawamura, M. J. Am. Chem. Soc.
2012, 134, 8982. (e) Yoshida, M.; Ohmiya, H.; Sawamura, M. J. Am.
Chem. Soc. 2012, 134, 11896. (f) Shido, Y.; Yoshida, M.; Tanabe, M.;
Ohmiya, H.; Sawamura, M. J. Am. Chem. Soc. 2012, 134, 18573.
(g) Hojoh, K.; Shido, Y.; Ohmiya, H.; Sawamura, M. Angew. Chem., Int.
Ed. 2014, 53, 4954. (h) Wakamatsu, T.; Nagao, K.; Ohmiya, H.;
Sawamura, M. Angew. Chem., Int. Ed. 2013, 52, 11620.
(6) For Ni- or Pd-catalyzed transmetalative carboboration of internal
alkynes, see: (a) Yamamoto, A.; Suginome, M. J. Am. Chem. Soc. 2005,
127, 15706. (b) Daini, M.; Yamamoto, A.; Suginome, M. J. Am. Chem.
Soc. 2008, 130, 2918. (c) Daini, M.; Suginome, M. Chem. Commun.
2008, 5224. (d) Nakada, K.; Daini, M.; Suginome, M. Chem. Lett. 2013,
42, 538.
coupling with 4aa were unsuccessful, the conversion of the ester
group into a secondary amide gave an organoboron derivative
suitable for Pd-catalyzed coupling with 4-iodotoluene to afford
tetrasubstituted alkene 7aa.12
In summary, phosphine-catalyzed anti-selective carboboration
of alkynoates with alkyl-, alkenyl-, or arylboranes to form β-boryl
acrylates was reported. Interestingly, the carboboration across
the polar C−C triple bond occurred with inverse electronic
demand with regard to the regioselectivity, with the less
electronegative B atom being delivered to the positively charged
β carbon atom. The regioselectivity and anti stereoselectivity
were both complete and robust. In addition, a broad substrate
scope with excellent functional group compatibility was
confirmed. Accordingly, this phosphine-catalyzed protocol
provides a new and efficient strategy for organic synthesis
mediated by organoboron compounds.
(7) For Cu-catalyzed carboborations of internal alkynes with
bis(pinacolato)diboron and carbon electrophiles, see: (a) Alfaro, R.;
́
Parra, A.; Aleman, J.; Ruano, J. L. G.; Tortosa, M. J. Am. Chem. Soc. 2012,
134, 15165. (b) Zhang, L.; Cheng, J.; Carry, B.; Hou, Z. J. Am. Chem. Soc.
2012, 134, 14314. (c) Yoshida, H.; Kageyuki, I.; Takaki, K. Org. Lett.
2013, 15, 952.
(8) For synthesis of trisubstituted alkenylboron derivatives, see:
(a) Hata, T.; Kitagawa, H.; Masai, H.; Kurahashi, T.; Shimizu, M.;
Hiyama, T. Angew. Chem., Int. Ed. 2001, 40, 790. (b) Shimizu, M.;
Nakamaki, C.; Shimono, K.; Schelper, M.; Kurahashi, T.; Hiyama, T. J.
Am. Chem. Soc. 2005, 127, 12506. (c) Itami, K.; Kamei, T.; Yoshida, J. J.
Am. Chem. Soc. 2003, 125, 14670. (d) Nishihara, Y.; Miyasaka, M.;
Okamoto, M.; Takahashi, H.; Inoue, E.; Tanemura, K.; Takagi, K. J. Am.
Chem. Soc. 2007, 129, 12634. (e) Nishihara, Y.; Okada, Y.; Jiao, J.;
Suetsugu, M.; Lan, M.-T.; Kinoshita, M.; Iwasaki, M.; Takagi, K. Angew.
Chem., Int. Ed. 2011, 50, 8660. (f) Endo, K.; Hirokami, M.; Shibata, T. J.
Org. Chem. 2010, 75, 3469. (g) Hupe, E.; Marek, I.; Knochel, P. Org. Lett.
2002, 4, 2861. (h) Okuno, Y.; Yamashita, M.; Nozaki, K. Angew. Chem.,
Int. Ed. 2011, 50, 920.
(9) For reviews on nucleophilic catalysis by phosphines, see:
(a) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035.
(b) Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140. (c) Lu,
X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535. For a review on
Lewis base catalysis in organic synthesis, see: (d) Denmark, S. E.;
Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47, 1560.
(10) For Table 2, entries 4 and 5, unreacted alkynoate was detected in
the crude materials. For Table 2, entries 6 and 7, the conversion of 3g
and 3h was 100% with unidentified compounds observed in the crude
materials.
(11) For recent papers on 1,2-metalate rearrangement of borate
complexes, see: (a) Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal,
V. K. Nature 2008, 456, 778. (b) Bagutski, V.; French, R. M.; Aggarwal,
V. K. Angew. Chem., Int. Ed. 2010, 49, 5142. (c) Pulis, A. P.; Aggarwal, V.
K. J. Am. Chem. Soc. 2012, 134, 7570. (d) Aggarwal, V. K.; Binanzer, M.;
Ceglie, M. C. d.; Gallanti, M.; Glasspoole, B. W.; Kendrick, S. J. F.;
ASSOCIATED CONTENT
* Supporting Information
Experimental details and characterization data for all new
compounds (PDF). This material is available free of charge via
■
S
AUTHOR INFORMATION
■
Corresponding Authors
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by Grants-in-Aid for Young Scientists
(A) and Challenging Exploratory Research, JSPS to H.O. and by
CREST, JST to M.S. K.N. thanks JSPS for scholarship support.
We thank Prof. Tomohiro Iwai (Hokkaido University) for the X-
ray crystal structure analysis.
REFERENCES
■
(1) (a) Suginome, M.; Yamamoto, A.; Murakami, M. J. Am. Chem. Soc.
2003, 125, 6358. (b) Suginome, M.; Yamamoto, A.; Murakami, M.
Angew. Chem., Int. Ed. 2005, 44, 2380. (c) Suginome, M.; Yamamoto, A.;
Murakami, M. J. Organomet. Chem. 2005, 690, 5300. (d) Suginome, M.;
Yamamoto, A.; Sasaki, T.; Murakami, M. Organometallics 2006, 25,
2911. (e) Suginome, M.; Shirakura, M.; Yamamoto, A. J. Am. Chem. Soc.
2006, 128, 14438. (f) Suginome, M. Chem. Rec. 2010, 10, 348.
(2) For a review on the synthesis of multisubstituted alkenes, see:
Flynn, A. B.; Ogilvie, W. W. Chem. Rev. 2007, 107, 4698.
́
Sonawane, R. P.; Vazquez-Romero, A.; Webster, M. P. Org. Lett. 2011,
13, 1490. (e) Partridge, B. M.; Chausset-Boissarie, L.; Burns, M.; Pulis,
A. P.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2012, 51, 11795. (f) Pulis, A.
P.; Blair, D. J.; Torres, E.; Aggarwal, V. K. J. Am. Chem. Soc. 2013, 135,
16054.
(12) (a) Ohmura, T.; Awano, T.; Suginome, M. Chem. Lett. 2009, 38,
664. (b) Ohmura, T.; Awano, T.; Suginome, M. J. Am. Chem. Soc. 2010,
132, 13191.
(3) For allylboration of terminal alkynes with allylboranes, see:
(a) Mikhailov, B. M.; Bubnov, Y. N. Tetrahedron Lett. 1971, 12, 2127.
(b) Erdyakov, S. Y.; Ignatenko, A. V.; Potapova, T. V.; Lyssenko, K. A.;
Gurskii, M. E.; Bubnov, Y. N. Org. Lett. 2009, 11, 2872 and references
therein.
10608
dx.doi.org/10.1021/ja506310v | J. Am. Chem. Soc. 2014, 136, 10605−10608