Green Chemistry
Page 4 of 5
DOI: 10.1039/C7GC00840F
Ir(ppy)3 as photocatalyst, albeit with low yield of the desired
product (see Eq. S7 in ESI).
4
For non‐radical approaches to alkenylated/alkynylated
ethers and amides, see: (a) N. T. Patil, L. M. Lutete, H. Wu, N. K.
In conclusion, we have developed an efficient method for Pahadi, I. D. Gridnev and Y. Yamamoto, J. Org.Chem., 2006, 71
,
the direct C(sp3)‐H alkenylation/alkynylation of ethers/amides 4270; (b) K. Tsuchikama, M. Kasagawa, K. Endo and T. Shibata,
with household fluorescent light bulb and a catalytic amount Org. Lett., 2009, 11, 1821; (c) D. S. B. Daniels, A. L. Thompson
of diaryketone. This process allows easy access to alkenyl, and E. A. Anderson, Angew. Chem. Int. Ed., 2011, 50, 11506; (d)
alkynyl and allyl substituted ethers/amides in good yield with D. Banerjee, R. V. Jagadeesh, K. Junge, H. Junge and M. Beller,
moderate to excellent stereoselectivity. Furthermore, the Angew. Chem. Int. Ed., 2012, 51, 11556.
ability to perform the reaction with UV light sensitive aromatic
5
Synthesis of alkenylated/alkynylated ethers/amides using
halide and alcohol functional groups adds value to this green stoichiometric amount of benzophenone and UV light: (a) T.
protocol. This process represents a straightforward entry to Hoshikawa, S. Kamijo and M. Inoue, Org. Biomol. Chem., 2013,
different synthetically valuable compounds and natural 11, 164; (b) Y. Amaoka, M. Nagatomo, M. Watanabe, K. Tao, S.
product such as (±)‐norruspoline. Further studies toward Kamijo and M. Inoue, Chem. Sci., 2014,
5
, 4339.
reaction mechanism and application of this process with other
class of substrates are currently being pursued in our group.
6
Some selected reviews on visible light mediated
photocatalysis: (a) K. Zeitler, Angew. Chem. Int. Ed., 2009, 48
9785; (b) J. Xuan and W.‐J. Xiao, Angew. Chem. Int. Ed., 2012, 51
,
,
Acknowledgements
6828; (c) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem.
Rev., 2013, 113, 5322; (d) D. Ravelli, M. Fagnoni and A. Albini,
We gratefully acknowledge the generous financial support Chem. Soc. Rev., 2013, 42, 97; (e) D. M. Schultz and T. P. Yoon,
of Science and Engineering Research Board, India Science, 2014, 343; (f) J. Xie, H. Jin, P. Xu and C. Zhu, Tetrahedron
(No.SB/S5/GC‐08/2014) and CSIR for fellowship to SP.
Lett., 2014, 55, 36; (g) J. J. Douglas, M. J. Sevrin and C. R. J.
Stephenson, Org. Process Res. Dev., 2016, 20, 1134; (h) I. Ghosh,
L. Marzo, A. Das, R. Shaikh and B. König, Acc. Chem. Res., 2016,
49, 1566.
Notes and references
1
Some selected reviews on catalytic C(sp3)‐H functionalization
of abundant chemicals: (a) C.‐J. Li, Acc. Chem. Res., 2009, 42
335; (b) H. M. L. Davies and D. Morton, Chem. Soc. Rev., 2011, 50, 11701.
40, 1857; (c) C.‐L. Sun, B.‐J. Li and Z.‐J. Shi, Chem. Rev., 2011, D. R. Heitz, J. C. Tellis and G. A. Molander, J. Am. Chem. Soc.,
111, 1293; (d) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 2016, 138, 12715.
111, 1215; (e) S.‐Y. Zhang, F.‐M. Zhang and Y.‐Q. Tu, Chem. Soc. (a) S. Paul and J. Guin, Chem. Eur. J., 2015, 21, 17618; (b) P.
Rev., 2011, 40, 1937; (f) B. Zhang, Y. Cui and N. Jiao, Chem. Biswas, S. Paul and J. Guin, Angew. Chem. Int. Ed., 2016, 55
Commun., 2012, 48, 4498; (g) J. F. Hartwig, J. Am. Chem. Soc., 7756; (c) P. Das, D. Saha, D. Saha and J. Guin, ACS Catal., 2016,
2016, 138, 2. 6050.
(a) M. Beller, J. Seayad, A. Tillack and H. Jiao, Angew. Chem. 10 (a) Hoffmann, N. Chem. Rev. 2008, 108, 1052; (b) Bach, T.;
7
(a) J.‐B. Xia, C. Zhu and C. Chen, J. Am. Chem. Soc., 2013, 135
,
,
17494; (b) J.‐B. Xia, C. Zhu and C. Chen, Chem. Commun., 2014,
8
9
,
,
6
2
Int. Ed., 2004, 43, 3368; (b) R. I. McDonald, G. Liu and S. S. Stahl, Hehn, J. P. Angew. Chem. Int. Ed. 2011, 50, 1000.
Chem. Rev., 2011, 111, 2981; (c) S. E. Denmark, W. E. Kuester 11 It is expected that the radical‐radical coupling between III
and M. T. Burk, Angew. Chem. Int. Ed., 2012, 51, 10938.
(a) J. Gong and P. L. Fuchs, J. Am. Chem. Soc., 1996, 118
4486; (b) J. Xiang and P. L. Fuchs, J. Am. Chem. Soc., 1996, 118
and IV would be unfavorable in the presence of vinyl sulfone, as
both the radicals (III and IV) are nucleophilic in nature.
12 B. Persson, Acta Chem. Scand., 1977, 31B, 88.
3
,
,
11986; (c) Y.‐J. Jang, Y.‐K. Shih, J.‐Y. Liu, W.‐Y. Kuo and C.‐F. Yao, 13 (a) K. T. Tarantino, P. Liu and R. R. Knowles, J. Am. Chem.
Chem. Eur. J., 2003, , 2123; (d) Y. Zhang and C.‐J. Li, Soc., 2013, 135, 10022; (b) E. C. Gentry and R. R. Knowles, Acc.
9
Tetrahedron Lett., 2004, 45, 7581; (e) Z. Chen, Y.‐X. Zhang, Y. An, Chem. Res., 2016, 49, 1546; (c) D. C. Miller, K. T. Tarantino and R.
X.‐L. Song, Y.‐H. Wang, L.‐L. Zhu and L. Guo, Eur. J. Org. Chem., R. Knowles, Top Curr Chem, 2016, 374.
2009, 5146; (f) L. Huang, K. Cheng, B. Yao, J. Zhao and Y. Zhang, 14 When the reaction was performed in ethylacetate using 50
Synthesis, 2009, 3504; (g) M. Sun, H. Wu and W. Bao, Org. equiv of THF, the desired product 2 was isolated in 35% yield.
Biomol. Chem., 2013, 11, 7076; (h) X. Tusun and C.‐D. Lu, Synlett, 15 For catalyst recycle experiment, the reaction was stopped at
2013, 24, 1693; (i) M. Wan, Z. Meng, H. Lou and L. Liu, Angew. nearly 95% consumption of the starting vinyl sulfone to recover
Chem. Int. Ed., 2014, 53, 13845; (j) H. Yan, L. Lu, G. Rong, D. Liu, the catalyst in good quantity. This is particularly important
Y. Zheng, J. Chen and J. Mao, J. Org. Chem., 2014, 79, 7103; (k) J. because catalyst regeneration process requires sulfinyl radical
Zhang, P. Li and L. Wang, Org. Biomol. Chem., 2014, 12, 2969; (l) (see Eq. S5 in ESI).
J. Li, J. Zhang, H. Tan and D. Z. Wang, Org. Lett., 2015, 17, 2522; 16 Roessler, F.; Ganzinger, D.; Johne, S.; Schöpp, E.; Hesse, M.
(m) Z. Liu, L. Wang, D. Liu and Z. Wang, Synlett, 2015, 26, 2849; Helv. Chim. Acta 1978, 61, 1200.
(n) A. Noble, S. J. McCarver and D. W. C. MacMillan, J. Am. 17 The formation of benzenesulfonic acid that may produce via
Chem. Soc., 2015, 137, 624; (o) A. Sølvhøj, A. Ahlburg and R. aerial oxidation of the benzenesulfinic acid was confirmed by 1H
Madsen, Chem. Eur. J., 2015, 21, 16272.
NMR as well as HRMS analysis.
18 M. A. Cismesia and T. P. Yoon, Chem. Sci., 2015, 6, 5426.
4