G Model
CCLET 3024 1–5
X.-J. Song et al. / Chinese Chemical Letters xxx (2014) xxx–xxx
3
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
Compound 3c: Yield 82%, mp 135–136 8C; 1H NMR (400 MHz,
DMSO-d6): 7.83 (s, 1H, NH), 7.43–7.09 (m, 4H, Ar-H), 4.67 (s, 2H,
Ar-CH2), 3.09–2.92 (m, 4H, 5- and 7-CH2), 2.50–2.40 (m, 2 H, 6-
CH2); 19F NMR (376 MHz, DMSO-d6):
cmÀ1): 3469 (N–H), 1590 (C55N), 1339, 1143 (CF3); EI-MS (%): m/z
367 (M+, 46.8), 124 (58.8), 109 (100); Anal. Calcd. for C17H13F4N3S:
C 55.58, H 3.57, N 11.44; found: C 55.43, H 3.72, N 11.28.
Compound 3d: Yield 79%, mp 153–154 8C; 1H NMR (400 MHz,
Compound 3j: Yield 73%, mp 123–124 8C; 1H NMR (400 MHz, 160
d
DMSO-d6):
Ar-CH2), 3.57 (s, 3H, OCH3), 2.98–2.81 (m, 4H, 5- and 7-CH2), 2.37– 162
2.30 (m, 2H, 6-CH2); 19F NMR (376 MHz, DMSO-d6):
d 7.70 (s, 1H, NH), 7.09–6.64 (m, 4H, Ar-H), 4.55 (s, 2H, 161
d
À69.00, À116.30; IR (KBr,
d
À69.06; IR 163
(KBr, cmÀ1): 3432 (N–H), 1579 (C55N), 1339, 1132 (CF3); EI-MS (%): 164
m/z 379 (M+, 68.2), 136 (100), 121 (57.5); Anal. Calcd. for 165
C18H16F3N3OS: C 56.98, H 4.25, N 11.08; found: C 57.11, H 4.34, 166
N 11.20.
Compound 3k: Yield 83%, mp 118–119 8C; 1H NMR (400 MHz, 168
DMSO-d6): 7.77 (s, 1H, NH), 7.33–6.84 (m, 4H, Ar-H), 4.62 (s, 2H, 169
Ar-CH2), 3.68 (s, 3H, OCH3), 3.07–2.91 (m, 4H, 5- and 7-CH2), 2.49– 170
167
DMSO-d6):
d 7.74 (s, 1H, NH), 7.43–7.26 (m, 4H, Ar-H), 4.79 (s, 2H,
Ar-CH2), 3.13–2.95 (m, 4H, 5- and 7-CH2), 2.50–2.45 (m, 2H, 6-
d
CH2); 19F NMR (376 MHz, DMSO-d6):
d
À69.12; IR (KBr, cmÀ1):
3452 (N–H), 1580 (C55N), 1367, 1121 (CF3); EI-MS (%): m/z 383 (M+,
64.6), 140 (61.3), 125 (100); Anal. Calcd. for C17H13ClF3N3S: C
53.20, H 3.41, N 10.95; found: C 53.31, H 3.56, N 11.10.
2.40 (m, 2H, 6-CH2); 19F NMR (376 MHz, DMSO-d6):
d
À 69.08; IR 171
(KBr, cmÀ1): 3474 (N–H), 1596 (C55N), 1367, 1115 (CF3); EI-MS (%): 172
m/z 379 (M+, 17.0), 136 (4.9), 121 (100); Anal. Calcd. for 173
Compound 3e: Yield 84%, mp 126–127 8C; 1H NMR (400 MHz,
C18H16F3N3OS: C 56.98, H 4.25, N 11.08; found: C 56.86, H 4.17, 174
DMSO-d6):
d
7.87 (s, 1H, NH), 7.42–7.31 (m, 4H, Ar-H), 4.67 (s, 2H,
N 10.85.
175
176
Ar-CH2), 3.08–2.89 (m, 4H, 5- and 7-CH2), 2.50–2.40 (m, 2H,
6-CH2); 19F NMR (376 MHz, DMSO-d6):
d
À69.01; IR (KBr, cmÀ1):
3. Results and discussion
3462 (N–H), 1568 (C55N), 1333, 1121 (CF3); EI-MS (%): m/z 383 (M+,
70.0), 140 (64.4), 125 (100); Anal. Calcd. for C17H13ClF3N3S: C
53.20, H 3.41, N 10.95; found: C 53.40, H 3.27, N 10.86.
The synthesis was initiated by allowing readily available 177
cyclopentanone to react with malononitrile and sulfur to form 178
thiophene 1 based on the modified Gewald procedure. In this 179
context, we have found that the Gewald reaction efficiently occurs 180
in the presence of potassium carbonate (K2CO3) as a heterogeneous 181
base catalyst under reflux in ethanol. To the best of our knowledge, 182
the use of K2CO3 in the synthesis of 2-aminothiophenes has not 183
been reported. To show the merits of the present work, we 184
compared results obtained from K2CO3 with those previously 185
reported [21–27]. Table 1 reveals that K2CO3 is an inexpensive, 186
highly efficient, and green catalyst that can produce thiophene 1 in 187
short time and favorable yield. The key intermediate 2 was 188
efficiently prepared directly from thiophene 1, TFA, and phospho- 189
Compound 3f: Yield 75%, mp 150–151 8C; 1H NMR (400 MHz,
DMSO-d6):
Ar-CH2), 3.13–2.96 (m, 4H, 5- and 7-CH2), 2.50–2.45 (m, 2H, 6-
CH2), 2.38 (s, 3H, CH3); 19F NMR (376 MHz, DMSO-d6):
d 7.72 (s, 1H, NH), 7.30–7.11 (m, 4H, Ar-H), 4.68 (s, 2H,
d
À69.10; IR
(KBr, cmÀ1): 3468 (N–H), 1585 (C55N), 1339, 1121 (CF3); EI-MS (%):
m/z 363 (M+, 44.0), 120 (19.9), 105 (100); Anal. Calcd. for
C18H16F3N3S: C 59.49, H 4.44, N 11.56; found: C 59.64, H 4.29, N
11.46.
Compound 3g: Yield 80%, mp 124–125 8C; 1H NMR (400 MHz,
DMSO-d6):
Ar-CH2), 2.97–2.80 (m, 4H, 5- and 7-CH2), 2.37–2.27 (m, 2H, 6-
CH2), 2.10 (s, 3H, CH3); 19F NMR (376 MHz, DMSO-d6):
d 7.67 (s, 1H, NH), 7.15–6.94 (m, 4H, Ar-H), 4.52 (s, 2H,
d
À69.06; IR
rous oxychloride using toluene as a solvent via a one-pot 190
(KBr, cmÀ1): 3413 (N–H), 1580 (C55N), 1334, 1137 (CF3); EI-MS (%):
m/z 363 (M+, 40.6), 120 (30.9), 105 (100); Anal. Calcd. for
C18H16F3N3S: C 59.49, H 4.44, N 11.56; found: C 59.37, H 4.53, N
11.75.
procedure, which presents several advantages, such as milder 191
reaction conditions, simpler handling, and better yields, compared 192
with traditional multi-step methods (Routes A–C in Scheme 1). 193
Subsequently, the chloride 2 reacts with appropriate amines to 194
Compound 3h: Yield 81%, mp 157–158 8C; 1H NMR (400 MHz,
form 3.
195
DMSO-d6):
Ar-CH2), 3.11–2.94 (m, 4H, 5- and 7-CH2), 2.49–2.44 (m, 2H, 6-
CH2); 19F NMR (376 MHz, DMSO-d6):
d
7.89 (s, 1H, NH), 7.64–7.59 (m, 4H, Ar-H), 4.77 (s, 2H,
The structures of compounds 3a–3k were characterized by IR, 196
1H NMR, 19F NMR, EI-MS, and elemental analysis. 1H NMR spectra 197
d
À61.18, À69.09; IR (KBr,
show the expected occurrence of signals from the NH (
7.52), aryl protons ( 7.65–6.60), benzyl CH2 4.80–4.50), and 199
three cycloalkyl methylene protons (
3.15–2.25). The 19F signal 200
assigned to the trifluoromethyl (CF3) group at the C-2 position of 201
d 7.90– 198
cmÀ1): 3429 (N–H), 1568 (C55N), 1322, 1126 (CF3); EI-MS (%): m/z
417 (M+, 73.6), 174 (100), 159 (39.2); Anal. Calcd. for C18H13F6N3S:
C 51.80, H 3.14, N 10.07; found: C 51.92, H 3.30, N 9.89.
Compound 3i: Yield 74%, mp 154–155 8C; 1H NMR (400 MHz,
d
(d
d
the thieno[2,3-d]pyrimidine ring appears near
d
À69.0. In addition, 202
DMSO-d6):
Ar-CH2), 3.83 (s, 3H, OCH3), 3.12–2.96 (m, 4H, 5- and 7-CH2), 2.49–
2.44 (m, 2H, 6-CH2); 19F NMR (376 MHz, DMSO-d6):
d
7.52 (s, 1H, NH), 7.18–6.84 (m, 4H, Ar-H), 4.70 (s, 2H,
EI mass spectra gave the anticipated M+ peak. The spectroscopic 203
data are in good agreement with the proposed chemical structures 204
d
À69.09; IR
of the synthesized compounds.
205
(KBr, cmÀ1): 3468 (N–H), 1585 (C55N), 1361, 1121 (CF3); EI-MS (%):
m/z 379 (M+, 59.5), 136 (32.1), 121 (100); Anal. Calcd. for
C18H16F3N3OS: C 56.98, H 4.25, N 11.08; found: C 57.15, H 4.09,
N 11.23.
To further confirm the structures of these compounds and 206
provide a basis for the studies of structure–activity relationships, 207
the crystal structure of compound 3h was determined by single- 208
crystal X-ray diffraction. A colorless single crystal of compound 3h 209
Table 1
Comparison of different methods for synthesizing thiophene 1 via Gewald reaction of cyclopentanone and malononitrile.
a
Entry
Catalyst
Condition
Time
Yield (%)
Ref.
1
2
3
4
5
6
7
8
9
K2CO3
Ethanol, reflux
Ethanol, 60 8C
DMF, 60 8C
3 h
12 h
10 h
4 h
81
85
79
65
57
55
49
47
31
This work
[22]
Calcined Mg–Al hydrotalcite
L
-Proline
[23]
Bovine serum albumin
KF-alumina
DMF, 50 8C
[24]
Ethanol, MWb
Ethanol, reflux
Solvent free, 100 8C
Ethanol, reflux
Ethanol, reflux
8 min
[21]
KF-alumina
5.5 h
[21]
Nano ZnO
6 h
4 h
2 h
[25]
KG-60-piperazine
Morpholine
[26]
[27]
a
Isolated yield.
b
Microwave heating.
Please cite this article in press as: X.-J. Song, et al., Facile synthesis and antitumor activity of novel 2-trifluoromethylthieno[2,3-