I. Volovych et al. / Journal of Molecular Catalysis A: Chemical 393 (2014) 210–221
221
the reactivity of the sol–gel immobilized catalysts the application of
hydrophobically modified surfaces (PhSiO2) is preferred, because of
the attractive interactions between the hydrophobic aromatic sub-
strates, e.g. iodobenzene, and the palladium catalyst immobilized
on phenyl modified silica. The synthesized catalysts are more active
in comparison to commercial catalysts (e.g. Pd@SiO2 or Pd@C) and
can be used in a variety of Heck reactions. These immobilized cat-
alysts could be recycled more than 6 times without loss in activity.
No homogeneous species were detected in the reaction mixture, as
proved by the heterogeneity tests. Due to the high porosity and the
strongly branched pore systems of the sol–gel materials the diffu-
sion of small reactant molecules inside the pore systems was not
very high. To obtain a good utilization of the active noble metal
immobilized in the support material the loading should be limited
to an amount that still guarantees a high effectiveness factor of the
composite catalysts (see Fig. S3 in Supporting Information). The
influence of the mass transport limitations on the reaction rate
can be quantified from the comparison of the activation energies
EA of the coupling reaction between bromobenzene and styrene
with sol–gel immobilized catalyst and with homogeneous cata-
lyst. It was also showed that the Weisz-modulus was ꢅ > 1. With
a well adjusted Pd(OAc)2 loading in the range of 0.5% a highly effi-
cient catalyst was obtained for the reaction tested here that also
show stable recycling behavior. The immobilization process of the
palladium catalysts was disadvantageous in comparison to homo-
geneous catalysts. But on the other side the possibility of catalyst
recycling more than 6 times compensate this disadvantage and a
catalyst efficiency ꢄ ꢂ 1 could be arrived, which is characteristic for
very stable and active heterogeneous catalysts.
[7] C.M. Crudden, M. Sateesh, R. Lewis, C. Kl, J. Am. Chem. Soc. 127 (2005)
10045–10050.
[8] V. Polshettiwar, Á. Molnár, Tetrahedron 63 (2007) 6949–6976.
[9] S. Jana, B. Dutta, R. Bera, S. Koner, Inorg. Chem. 47 (2008) 5512–5520.
[10] Y. Ji, S. Jain, R.J. Davis, J. Phys. Chem. B 109 (2005) 17232–17238.
[11] F. Gelman, D. Avnir, H. Schumann, J. Blum, J. Mol. Catal. A: Chem. 146 (1999)
123–128.
[12] Z. Nairoukh, J. Blum, J. Mol. Catal. A: Chem. 358 (2012) 129–133.
[13] K. Hamza, H. Schumann, J. Blum, Eur. J. Org. Chem. (2009) 1502–1505.
[14] T. Yosef, R. Schomäcker, M. Schwarze, M. Fanun, F. Gelman, J. Mol. Catal. A:
Chem. 351 (2011) 46–51.
[15] D. Meltzer, D. Avnir, M. Fanun, V. Gutkin, I. Popov, R. Schomäcker, M. Schwarze,
J. Blum, J. Mol. Catal. A: Chem. 335 (2011) 8–13.
[16] S. Dahoah, Z. Nairoukh, M. Fanun, M. Schwarze, R. Schomäcker, J. Blum, J. Mol.
Catal. A: Chem. 380 (2013) 90–93.
[17] A. Rosin-Ben Baruch, D. Tsvelikhovsky, M. Schwarze, R. Schomäcker, M. Fanun,
J. Blum, J. Mol. Catal. A: Chem. 323 (2010) 65–69.
[18] B.H. Lipshutz, S. Ghorai, Ald. Acta 41 (2008) 59–72.
[19] S. Bhattacharya, A. Srivastava, S. Sengupta, Tetrahedron Lett. 46 (2005)
3557–3560.
[20] A. Arcadi, G. Cerichelli, M. Chiarini, M. Correa, D. Zorzan, Eur. J. Org. Chem. 2003
(2003) 4080–4086.
[21] L. Botella, C. Nájera, Tetrahedron 60 (2004) 5563–5570.
[22] C.H. Kee, et al., Org. Biomol. Chem. 8 (2010) 5646–5660.
[23] A. Buchwald, C. Kaps, GDCh-Monographie, 1999.
[24] D. Avnir, Acc. Chem. Res. 28 (1995) 328–334.
[25] G. Ertl, H. Knözinger, F. Schüth, Handbook of Heterogeneous Catalysis, Wiley-
VCH, Weinheim, 2008.
[26] H.K. Schmidt, Chem. Unserer Zeit 3 (2001) 176–184.
[27] J. Parka, M. Komarnenia, S. Lima, W.T. Heoa, N.H. Choia, J. Mater. Res. 15 (2000)
1437–1440.
[28] I. Volovych, M. Schwarze, T. Hamerla, J. Blum, R. Schomäcker, J. Mol. Catal. A:
Chem. 366 (2013) 359–367.
[29] W. Jost, K. Hauffe, Ber. Der Bunsenges. Phys. Chem. 66 (1962) 77.
[30] P.B. Weisz, C.D. Prater, Adv. Catal. 6 (1954) 143–196.
[31] M. Polestra, H.S. Harned, J. Am. Chem. Soc. 75 (1953) 4168–4169.
[32] E.S. Meadows, T.J. Crowley, C.D. Immanuel, Ind. Eng. Chem. Res. 42 (2003)
555–567.
[33] G. Ertl, H. Knözinger, F. Schüth, Handbook of Heterogeneous Catalysis, Wiley-
VCH, 2006.
[34] S.V. Jagtap, R.M. Deshpande, React. Kinet. Mech. Cat. 106 (2012) 457–473.
[35] J.-Z. Jiang, C. Cai, J. Colloid Interface Sci. 299 (2006) 938–943.
[36] W.J. Sommer, K. Yu, J.S. Sears, Y. Ji, X. Zheng, R.J. Davis, C.D. Sherrill, C.W. Jones,
M. Weck, Organometallics 24 (2005) 4351–4361.
[37] J.M. Richardson, C.W. Jones, Adv. Synth. Catal. 348 (2006) 1207–1216.
[38] D.L. Dodds, M.D.K. Boele, G.P.F. van Strijdonck, J.G. de Vries, P.W.N.M. van
Leeuwen, P.C.J. Kamer, Eur. J. Inorg. Chem. (2012) 1660–1671.
[39] S.V. Jagtap, R.M. Deshpande, Catal. Today 131 (2008) 353–359.
[40] L. Yin, J. Liebscher, Chem. Rev. 107 (2007) 133–173.
[41] G. Lu, C. Cai, Colloids Surf. A 355 (2010) 193–196.
[42] A. Behr, Applied Homogeneous Catalysis, Wiley-VCH, Weinheim, 2008.
[43] M. Schwarze, J.S. Milano-Brusco, V. Strempel, T. Hamerla, S. Wille, C. Fischer,
W. Baumann, W. Arlt, R. Schomäcker, RSC Adv. 1 (2011) 474–483.
[44] T. Hamerla, Untersuchungen zur Hydrierung von prochiralen Olefinen mit
Rhodium-Katalysatoren in Tensidsystemen, Diploma thesis, 2010.
Acknowledgment
We gratefully acknowledge the financial support of this
study by Deutsche Forschungsgemeinschaft (DFG) through grant
SCHO687/8-2.
Appendix A. Supplementary data
Supplementary data associated with this article can be
References
[45] K. Weidemaier, H.L. Tavernier, M.D. Fayer, J. Phys. Chem.
9352–9361.
B 101 (1997)
[1] A. Corma, H. Garcıꢀa, A. Leyva, A. Primo, Appl. Catal. A 247 (2003) 41–49.
[2] L. Djakovitch, K. Koehler, J. Am. Chem. Soc. 123 (2001) 5990–5999.
[3] P. Li, L. Wang, L. Zhang, G. Wang, Adv. Synth. Catal. 354 (2012) 1307–1318.
[4] C.W. Lim, I.S. Lee, Nano Today 5 (2010) 412–434.
[46] A. Chatterjee, S.P. Moulik, S.K. Sanyal, B.K. Mishra, P.M. Puri, J. Phys. Chem. B
105 (2001) 12823–12831.
[47] K. Mori, K. Yamaguchi, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem.
Soc. 124 (2002) 11572–11573.
[5] Q. Du, W. Zhang, H. Ma, J. Zheng, B. Zhou, Y. Li, Tetrahedron 68 (2012)
3577–3584.
[48] A. Ohtaka, T. Yamaguchi, T. Teratani, O. Shimomura, R. Nomura, Molecules 16
(2011) 9067–9076.
[6] M.M. Shinde, S.S. Bhagwat, J. Dispers. Sci. Technol. 33 (2012) 117–122.
[49] G. Zhang, H. Zhou, J. Hu, M. Liu, Y. Kuang, Green Chem. 11 (2009) 1428–1432.