Journal of Materials Chemistry C
Page 8 of 10
DOI: 10.1039/C5TC00779H
1
process,51ꢀ52 which could be converted into ππ* excitons of NA-
Platform of Specialized Laboratory, College of Chemistry,
Sichuan University for providing NMR data for the intermediates
and objective molecules.
TNA through TTA process. While the rest 3ππ* excitons of
CzPhONI could undergo a TTA process to generate 1ππ* excitons
of CzPhONI, which could be converted to 1CT* via internal
conversion. Consequently, in device III with relatively high guest
concentration, the triplet excitons could be effectively harvested
not only by the host compound, but also by the guest compound,
resulting in high EL performance.
5
60 References
1
2
C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913–915.
M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E.
Thompson and S. R. Forrest, Nature, 1998, 395, 151–154.
Y. Tao, K. Yuan, T. Chen, P. Xu, H. H. Li, R. F. Chen, C. Zheng, L.
Zhang and W. Huang, Adv. Mater., 2014, 26, 7931–7958.
L. Yao, B. Yang and Y. G. Ma, Sci. China: Chem., 2014, 57, 335–
345.
M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest and Z. G.
Soos, Phys. Rev. B: Condens. Matter Mater. Phys., 2003, 68,
075211.
3
4
5
65
70
Conclusions
10 A red naphthalimide derivative with DꢀπꢀA molecular structure,
namely NA-TNA was designed and synthesized. Photophysical
characterization revealed that NA-TNA is an ICTꢀfeatured comꢀ
pound; while theoretical calculation and MEL characterization
indicated that NA-TNA is a promising TFDF material because its
6
7
L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong and J. Kido, Adv
Mater., 2011, 23, 926–952.
K. Goushi, K. Yoshida, K. Sato and C. Adachi, Nat. Photonics.,
2012, 6, 253–258.
3
15 lowest triplet energy level possesses ππ* character. In addition,
NA-TNA could form an efficient ET pair with the TFDFꢀ
charactered host compound CzPhONI due to their structural simiꢀ
larity, and the presence of a bulky diphenylamine D subunit in
NA-TNA endows it with suppressed intermolecular interactions,
20 thereupon high PLQY could be achieved in NA-TNA/CzPhONI
blending films at relatively high guest doping levels. Taking adꢀ
vantages of the TFDF characters of both NA-TNA and CzPhONI
and the relatively high PLQY of the heavilyꢀdoped guest/host
activeꢀlayer, in OLED with 6 wt% doped NA-TNA/CzPhONI
25 film as the emissive layer, triplet excitons could be harvested
efficiently not only by the host, but also by the guest materials
through TTA process, hence the device displays high perforꢀ
mance with Lmax of 31940 cd/m2 and LEmax of 7.73 cd/A, and the
EQEmax is 5.83%, which breaks through the 25% singlet producꢀ
30 tion limit of this device. Our results indicated that ICTꢀfeatured
TFDF compounds should be quite promising OLED lightꢀ
emitting materials, and may shed light on the molecular design
strategy for the guest fluorophores to achieve highꢀperformance
OLEDs by way of TFDF.
75
8
9
A. P. Monkman, ISRN Mater. Sci., 2013, 2013, 670130.
Y. Im and J. Y. Lee, Chem. Mater., 2014, 26, 1413−1419.
10 T. Komino, H. Nomura, T. Koyanagi and C. Adachi, Chem. Mater.,
2013, 25, 3038–3047.
11 H. Uoyama,K.Goushi, K. Shizu, H. Nomura and C. Adachi, Nature,
2012, 492, 234−238.
12 W. J. Li, Y. Y. Pan, R. Xiao, Q. M. Peng, S. T. Zhang, D. G. Ma, F.
Li, F. Z. Shen, Y. H. Wang, B. Yang and Y. G. Ma, Adv. Funct.
Mater., 2014, 24, 1609−1614.
13 L. Yao, S. T. Zhang, R. Wang, W. J. Li, F. Z. Shen, B. Yang and Y.
G. Ma, Angew. Chem., 2014, 126, 2151–2155.
14 W. J. Li, Y. Y. Pan, L. Yao, H. C. Liu, S. T. Zhang, C. Wang, F. Z.
Shen, P. Lu, B. Yang and Y. G. Ma, Adv. Opt. Mater., 2014, 2,
892−901.
15 D. Fan, Y. P. Yi, Z. D. Li, W. J. Liu, Q. Peng and Z. G. Shuai, J.
Phys. Chem. A, 2014, DOI: 10.1021/jp5099409.
16 Y. Zhang and S. R. Forrest, Phys. Rev. Lett., 2012, 108,
267404/1−267404/5.
17 C.ꢀJ. Chiang, A. Kimyonok, M. K. Etherington, G. C. Griffiths, V.
Jankus, F. Turksoy and A. P. Monkman, Adv. Funct. Mater., 2013,
23, 739–746.
80
85
90
95
18 V. Jankus, C.ꢀJ. Chiang, F. Dias and A. P. Monkman, Adv. Mater.,
2013, 25, 1455–1459.
19 Y. C. Luo and H. Aziz, Adv. Funct. Mater., 2010, 20, 1285–1293.
20 S. M. King, M. Cass, M. Pintani, C. Coward, F. B. Dias, A. P.
Monkman and M. Roberts, J. Appl. Phys., 2011, 109,
074502/1−074502/5.
21 D. Yokoyama, Y. Park, B. Kim, S. Kim, Y. J. Pu, J. Kido and J.
Park, Appl. Phys. Lett., 2011, 99, 123303/1–123303/3.
22 S. K. Kim, B. Yang, Y. G. Ma, J. H. Lee and J. W. Park, J. Mater.
Chem., 2008, 18, 3376–3384.
23 P. Y. Chou, H. H. Chou, Y. H. Chen, T. H. Su, C. Y. Liao, H. W.
Lin, W. C. Lin, H. Y. Yen, I. C. Chen and C. H. Cheng, Chem.
Commun., 2014, 50, 6869–6871.
24 H. Fukagawa, T. Shimizu, N. Ohbe, S. Tokito, K. Tokumaru and H.
Fujikake, Org. Electron., 2012, 13, 1197–1203.
35 Notes and references
100
105
110
a
Key Laboratory of Green Chemistry and Technology (Ministry of Eduꢀ
cation), College of Chemistry, Sichuan University, Chengdu 610064, P.
R. China. Eꢀmail: luzhiyun@scu.edu.cn;
b State Key Laboratory of Supramolecular Structure and Materials, Jilin
40 University, Changchun 130012, P. R. China. Eꢀmail:lifeng01@jlu.edu.cn;
c
State Key Laboratory of Luminescence and Applications, Changchun
Institute of Optics, Fine Mechanics and Physics, Chinese Academy of
Sciences, Changchun 130033, P. R. China. Eꢀmail: liuxy@ciomp.ac.cn;
d College of Chemistry and Materials Science, Sichuan Normal Universiꢀ
45 ty, Chengdu 610068, P. R. China.
† Electronic Supplementary Information (ESI) available: synthetic
procedures and characterization data, photophysical and elecrochemical
25 J. Mezyk, R. Tubino, A. Monguzzi, A. Mech and F. Meinardi, Phys.
Rev. Lett., 2009, 102, 087404/1−087404/4.
26 Y. L. Lei, Y. Zhang, R. Liu, P. Chen, Q. L. Song and Z. H. Xiong,
Org. Electron., 2009, 10, 889–894.
properties, electroluminescence properties, NMR, 13C NMR, FTꢀIR, and
1
HRMS spectra. See DOI: 10.1039/b000000x/
50 ‡ These authors contributed equally.
115 27 Y. Zhang, R. Liu, Y. L. Lei and Z. H. Xiong, Appl. Phys. Lett., 2009,
94, 083307/1−083307/3.
Acknowledgements
28 A. Ryasnyanskiy and I. Biaggio, Phys. Rev. B: Condens. Matter
Mater. Phys., 2011, 84, 193203/1−193203/4.
We acknowledge the financial support for this work by National
Natural Science Foundation of China (Projects 21190031,
61275036, 21372168, U1230121, and 21432005), and CAS
55 Innovation Program. We are grateful to the Analytical & Testing
Center of Sichuan University and Comprehensive Training
29 P. Irkhin and I. Biaggio, Phys. Rev. Lett., 2011, 107,
120
017402/1−017402/4.
30 J. Zhou, P. Chen, X. Wang, Y. Wang, Y. Wang, F. Li, M. H. Yang,
Y. Huang, J. S. Yu and Z. Y. Lu, Chem. Commun., 2014, 50, 7586–
7589.
31 J. Li, D. Liu, Z. Hong, S. Tong, P. Wang, C. Ma, O. Lengyel, C.ꢀS.
8
| Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]