Organic Letters
Letter
(g) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53,
74−100.
13 is protonated to release H2 and regenerate 9 to close the
catalytic cycle (Scheme 5C).
(4) He, K.-H.; Li, Y. ChemSusChem 2014, 7, 2788−2790.
(5) (a) Meng, Q.-Y.; Zhong, J.-J.; Liu, Q.; Gao, X.-W.; Zhang, H.-H.;
Lei, T.; Li, Z.-J.; Feng, K.; Chen, B.; Tung, C.-H.; Wu, L.-Z. J. Am. Chem.
Soc. 2013, 135, 19052−19055. (b) Li, X.-B.; Li, Z.-J.; Gao, Y.-J.; Meng,
Q.-Y.; Yu, S.; Weiss, R. G.; Tung, C.-H.; Wu, L.-Z. Angew. Chem., Int. Ed.
2014, 53, 2085−2089. (c) Zhong, J.-J.; Meng, Q.-Y.; Liu, B.; Li, X.-B.;
Gao, X.-W.; Lei, T.; Wu, C.-J.; Li, Z.-J.; Tung, C.-H.; Wu, L.-Z. Org. Lett.
2014, 16, 1988−1991. (d) Gao, X.-W.; Meng, Q.-Y.; Li, J.-X.; Zhong, J.-
J.; Lei, T.; Li, X.-B.; Tung, C.-H.; Wu, L.-Z. ACS Catal. 2015, 5, 2391−
2396. (e) Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J.-
X.; Wu, L.-Z.; Lei, A. J. Am. Chem. Soc. 2015, 137, 9273−9280.
(f) Manikandan, R.; Madasamy, P.; Jeganmohan, M. ACS Catal. 2016, 6,
230−234.
In conclusion, we developed a chemoselective annulation of
N−H imines and alkynes for synthesis of 3,4-dihydroisoquino-
lines or isoquinolines using the same Ru catalyst. The valuable
assets of the couplings are exhibited by switchable chemo-
selectivity, nearly 100% atom-economy, high cis-selectivity for the
synthesis of 3,4-dihydroisoquinolines and further possible
applications. Mechanistic investigations indicate a new strategy
toward constructing various chemical bonds via H2 release. The
established method will attract wide interest in developing
various catalysis systems for these highly concise cross-couplings.
ASSOCIATED CONTENT
* Supporting Information
■
(6) He, R.; Huang, Z.-T.; Zheng, Q.-Y.; Wang, C. Angew. Chem., Int. Ed.
2014, 53, 4950−4953.
S
(7) Zhou, A.-X.; Mao, L.-L.; Wang, G.-W.; Yang, S.-D. Chem. Commun.
2014, 50, 8529−8532.
The Supporting Information is available free of charge on the
(8) (a) Ureshino, T.; Yoshida, T.; Kuninobu, Y.; Takai, K. J. Am. Chem.
Soc. 2010, 132, 14324−14326. (b) Klare, H. F. T.; Oestreich, M.; Ito, J.-i.;
Nishiyama, H.; Ohki, Y.; Tatsumi, K. J. Am. Chem. Soc. 2011, 133, 3312−
3315. (c) Kuninobu, Y.; Nakahara, T.; Takeshima, H.; Takai, K. Org. Lett.
2013, 15, 426−428. (d) Kuninobu, Y.; Yamauchi, K.; Tamura, N.; Seiki,
T.; Takai, K. Angew. Chem., Int. Ed. 2013, 52, 1520−1522. (e) Toutov, A.
A.; Liu, W.-B.; Betz, K. N.; Fedorov, A.; Stoltz, B. M.; Grubbs, R. H.
Nature 2015, 518, 80−84. (f) Zhang, Q.-W.; An, K.; Liu, L.-C.; Yue, Y.;
He, W. Angew. Chem., Int. Ed. 2015, 54, 6918−6921.
Experimental procedure, characterization data, computa-
Copies of 1H and 13C NMR spectra (PDF)
AUTHOR INFORMATION
Corresponding Author
(9) Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles; Wiley-
VCH: Weinheim, 2003.
■
(10) For recent selected reviews, see: (a) Satoh, T.; Miura, M. Chem. -
Eur. J. 2010, 16, 11212−11222. (b) Colby, D. A.; Tsai, A. S.; Bergman, R.
G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814−825. (c) Song, G.; Wang,
F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651−3678. (d) Ackermann, L. Acc.
Chem. Res. 2014, 47, 281−295. (e) He, R.; Huang, Z.-T.; Zheng, Q.-Y.;
Wang, C. Tetrahedron Lett. 2014, 55, 5705−5713. (f) Huang, H.; Ji, X.;
Wu, W.; Jiang, H. Chem. Soc. Rev. 2015, 44, 1155−1171. (g) Mo, J. Y.;
Wang, L. H.; Liu, Y. Q.; Cui, X. L. Synthesis 2015, 47, 439−459.
(11) For recent selected reviews, see: (a) Shi, Z.; Zhang, C.; Tang, C.;
Jiao, N. Chem. Soc. Rev. 2012, 41, 3381−3430. (b) Allen, S. E.; Walvoord,
R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234−
6458.
(12) (a) De Sarkar, S.; Liu, W.; Kozhushkov, S. I.; Ackermann, L. Adv.
Synth. Catal. 2014, 356, 1461−1479. (b) Arockiam, P. B.; Bruneau, C.;
Dixneuf, P. H. Chem. Rev. 2012, 112, 5879−5918.
(13) (a) Gunanathan, C.; Milstein, D. Acc. Chem. Res. 2011, 44, 588−
602. (b) Gunanathan, C.; Milstein, D. Science 2013, 341, 249−341.
(c) Nielsen, M.; Alberico, E.; Baumann, W.; Drexler, H.-J.; Junge, H.;
Gladiali, S.; Beller, M. Nature 2013, 495, 85−89. (d) Rodríguez-Lugo, R.
E.; Trincado, M.; Vogt, M.; Tewes, F.; Santiso-Quinones, G.;
Author Contributions
§K.-H.H. and W.-D.Z. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Support of this work by the startup funding from Xi’an Jiaotong
University and NSFC (No. 21472145) is gratefully acknowl-
edged. We thank Prof. Dr. Zhang-Jie Shi, Peking University, Prof.
Dr. Xing-Wei Li, Dalian Institute of Chemical Physics, Chinese
Academy of Sciences, and Prof. Dr. Matthias Beller and Dr. Lin
He, Leibniz-Institut fur Katalyse e.V. an der Universitat Rostock,
̈
̈
Germany, for helpful discussions. We thank Prof. Dr. Yan-zhen
Zheng, Xi’an Jiaotong University, for single X-ray crystallography
measurement.
Grutzmacher, H. Nat. Chem. 2013, 5, 342−347.
̈
REFERENCES
(1) For selected reviews, see: (a) Negishi, E.-i.; Coper
■
(14) (a) Tang, Q.; Xia, D.; Jin, X.; Zhang, Q.; Sun, X.-Q.; Wang, C. J.
Am. Chem. Soc. 2013, 135, 4628−4631. (b) During the preparation of
our manuscript, a very similar study via iron catalysis was published: Jia,
T.; Zhao, C.; He, R.; Chen, H.; Wang, C. Angew. Chem., Int. Ed. 2016, 55,
5268−5271.
́
et, C.; Ma, S.;
Liou, S.-Y.; Liu, F. Chem. Rev. 1996, 96, 365−394. (b) Miyaura, N. Cross-
Coupling Reactions: A Practical Guide. Topics in Current Chemistry;
Springer: Berlin, 2002; Vol. 219. (c) de Meijere, A.; Diederich, F. Metal
Catalyzed Cross-Coupling Reactions; Wiley-VCH: Weinheim, 2004.
(2) For C−H activation, see: (a) Yu, J.-Q.; Shi, Z.-J. C−H Activation.
Topics in Current Chemistry; Springer: Berlin, 2010; Vol. 292. (b) Li, B.-J.;
Shi, Z.-J. Homogeneous Transition-Metal-Catalyzed C−H Bond
Functionalization. In Homogeneous Catalysis for Unreactive Bond
Activation; Shi, Z.-J., Ed.; John Wiley & Sons: Hoboken, NJ, 2014;
Chapter 6, pp 441−573.
(3) For selected recent reviews on cross-dehydrogenative couplings via
C−H activation, see: (a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335−344.
(b) Ashenhurst, J. A. Chem. Soc. Rev. 2010, 39, 540−548. (c) Cho, S. H.;
Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068−5083.
(d) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780−
1824. (e) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588−5598. (f) Shi,
Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381−3430.
(15) Traynelis, V. J.; Hergenrother, W. L. J. Org. Chem. 1964, 29, 221−
222.
(16) Li, M.; Li, P.; Chang, K.; Wang, T.; Liu, L.; Kang, Q.; Ouyang, S.;
Ye, J. Chem. Commun. 2015, 51, 7645−7648.
(17) (a) Watson, M. D.; Fechtenkotter, A.; Mullen, K. Chem. Rev. 2001,
̈
̈
101, 1267−1300. (b) Wu, J.; Pisula, W.; Mullen, K. Chem. Rev. 2007, 107,
̈
718−747.
(18) Haibach, M. C.; Seidel, D. Angew. Chem., Int. Ed. 2014, 53, 5010−
5036.
D
Org. Lett. XXXX, XXX, XXX−XXX