Journal of the American Chemical Society
Communication
Sons, Inc.: 2013; p 339. (b) van Kalkeren, H. A.; van Delft, F. L.; Rutjes,
F. P. J. T. ChemSusChem 2013, 6, 1615. (c) An, J.; Denton, R. M.;
Lambert, T. H.; Nacsa, E. D. Org. Biomol. Chem. 2014, 12, 2993.
(8) Dunn, N. L.; Ha, M.; Radosevich, A. T. J. Am. Chem. Soc. 2012, 134,
11330.
(9) Burgada, R.; Setton, R. In The Chemistry of Organophosphorus
Compounds; Hartley, F., Ed.; Wiley: Chichester, U.K., 1994; Vol. 3, pp
185−272.
(10) Axelrod, E.; Milne, G. M.; van Tamelen, E. E. J. Am. Chem. Soc.
1970, 92, 2139.
(11) Hirabe, T.; Nojima, M.; Kusabayashi, S. J. Org. Chem. 1984, 49,
4084.
(12) For related examples, see: (a) Kondo, K.; Negishi, A.; Tunemoto,
D. Angew. Chem., Int. Ed. Engl. 1974, 13, 407. (b) Utsugi, M.; Miyano,
M.; Nakada, M. Org. Lett. 2006, 8, 2973.
the apical site, and both the four-membered phosphetane and
five-membered envelope-like cycle spanning cis-basal positions.
The computed ΔH‡ (11.9 kcal/mol) is in good agreement with
the experimental value, and the cyclic nature of transition
structure TS is consistent with the negative value of the
experimentally determined activation entropy. We note that this
proposed mechanism via the five-center, six-electron transition
structure of TS bears a formal orbital equivalency with well-
known hydrocarbon-based pericyclic group transfer reactions28
(e.g., ene/retro-ene reactions29).
In summary, we have demonstrated a regioselective reductive
transposition of allylic bromides catalyzed by a small-ring
phosphacycle. The experimental and computational results
implicate the operation of a PIII/PV mechanistic pathway that
involves the interconversion of discrete, observable σ3-P, σ4-P+,
and σ5-P species. We note that the phosphetane-catalyzed allylic
reduction represents a phosphacatalytic complement to known
stoichiometric diazene-mediated30 and catalytic Pd π-allyl31
reduction protocols. The biphilic organophosphorus catalysis
demonstrated here presents reactivity that merges archetypal
nucleophilic and electrophilic manifolds; additional studies, both
synthetic and mechanistic, that probe this reactivity are currently
underway.
(13) For phosphine-catalyzed regioretentive allylic substitution, see:
(a) Cho, C.-W.; Kong, J.-R.; Krische, M. J. Org. Lett. 2004, 6, 1337.
(b) Cho, C.-W.; Krische, M. J. Angew. Chem., Int. Ed. 2004, 43, 6689.
(14) Brophy, J. J.; Gallagher, M. J. Aust. J. Chem. 1969, 22, 1399.
(15) Donoghue, N.; Gallagher, M. J. Chem. Commun. 1998, 1973.
(16) Zhao, W.; Yan, P. K.; Radosevich, A. T. J. Am. Chem. Soc. 2015,
137, 616.
(17) The σ4-P+ allylphosphonium salts derived from 6−11 are
conveniently manipulated air stable solids that liberate the correspond-
ing free σ3-P phosphines in solution by reduction with loss of propene.
(18) For early studies of cyclic phosphonium reactivity, see: (a) Aksnes,
G.; Bergesen, K.; Juvvik, P.; Thelin, H.; Sjoberg, B.; Larsen, E. Acta
Chem. Scand. 1965, 19, 931. (b) Cremer, S.; Trivedi, B.; Weitl, F. J. Org.
Chem. 1971, 36, 3226.
̈
ASSOCIATED CONTENT
* Supporting Information
Synthetic procedures, spectral characterization data, kinetics
data, Cartesian coordinates for stationary points. This material is
■
S
(19) (a) O’Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A.
L.; Kunkel, S. R.; Przeworski, K. C.; Chass, G. A. Angew. Chem., Int. Ed.
2009, 48, 6836. (b) van Kalkeren, H. A.; Leenders, S. H. A. M.;
Hommersom, C. R. A.; Rutjes, F. P. J. T.; van Delft, F. L. Chem.Eur. J.
2011, 17, 11290. (c) O’Brien, C. J.; Lavigne, F.; Coyle, E. E.; Holohan, A.
J.; Doonan, B. J. Chem.Eur. J. 2013, 19, 5854.
AUTHOR INFORMATION
Corresponding Author
Notes
■
(20) Phosphetane 10 was prepared on gram scale via McBride reaction
of PhPCl2, tert-butylethylene, and AlCl3 according to: Cremer, S. E.;
Chorvat, R. J. J. Org. Chem. 1967, 32, 4066.
(21) Marinetti, A.; Carmichael, D. Chem. Rev. 2002, 102, 201.
(22) Westheimer, F. H. Acc. Chem. Res. 1968, 1, 70.
The authors declare no competing financial interest.
(23) Hudson, R. F.; Brown, C. Acc. Chem. Res. 1972, 5, 204.
(24) Sella, A.; Basch, H.; Hoz, S. J. Am. Chem. Soc. 1996, 118, 416.
(25) The BPh4 counterion was required for low temperature
ACKNOWLEDGMENTS
■
−
Financial support was provided by the Pennsylvania State
University and the NIH (GM114547). A.T.R. gratefully
acknowledges early career support from the Alfred P. Sloan
Foundation.
solubility of phosphonium 12 in THF.
(26) (a) Hellwinkel, D. Angew. Chem., Int. Ed. 1966, 5, 968. (b) Ross,
M. R.; Martin, J. C. J. Am. Chem. Soc. 1981, 103, 1234. (c) Kojima, S.;
Kajiyama, K.; Nakamoto, M.; Akiba, K.-y. J. Am. Chem. Soc. 1996, 118,
12866. (d) Kojima, S.; Sugino, M.; Matsukawa, S.; Nakamoto, M.;
Akiba, K.-y. J. Am. Chem. Soc. 2002, 124, 7674.
(27) See SI for full details.
(28) Woodward, R. B.; Hoffmann, R. Angew. Chem., Int. Ed. 1969, 8,
781−853.
(29) (a) Hoffmann, H. M. R. Angew. Chem., Int. Ed. 1969, 8, 556.
(b) Oppolzer, W.; Snieckus, V. Angew. Chem., Int. Ed. 1978, 17, 476.
(30) (a) Myers, A. G.; Zheng, B. J. Am. Chem. Soc. 1996, 118, 4492.
(b) Myers, A. G.; Zheng, B. Tetrahedron Lett. 1996, 37, 4841.
(c) Movassaghi, M.; Ahmad, O. K. J. Org. Chem. 2007, 72, 1838.
(31) (a) Lautens, M.; Paquin, J.-F. Org. Lett. 2003, 5, 3391. (b) Chau,
A.; Paquin, J.-F.; Lautens, M. J. Org. Chem. 2006, 71, 1924.
(c) Movassaghi, M.; Ahmad, O. K. Angew. Chem., Int. Ed. 2008, 47, 8909.
REFERENCES
■
(1) Kamer, P. C. J.; van Leeuwen, P. W. N. M. Phosphorus(III)Ligands
in Homogeneous Catalysis: Design and Synthesis; Wiley: Hoboken, NJ,
2012.
(2) (a) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47,
1560. (b) Fan, Y. C.; Kwon, O. Chem. Commun. 2013, 49, 11588.
(c) Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
(3) Werner, T. Adv. Synth. Catal. 2009, 351, 1469.
(4) (a) Caputo, C. B.; Hounjet, L. J.; Dobrovetsky, R.; Stephan, D. W.
́
Science 2013, 341, 1374. (b) Perez, M.; Hounjet, L. J.; Caputo, C. B.;
Dobrovetsky, R.; Stephan, D. W. J. Am. Chem. Soc. 2013, 135, 18308.
(5) (a) Sereda, O.; Tabassum, S.; Wilhelm, R. In Asymmetric
Organocatalysis; List, B., Ed.; Topics in Current Chemistry; Springer:
Berlin, Heidelberg, 2010; pp 86−117. (b) Terada, M.; Kouchi, M.
Tetrahedron 2006, 62, 401.
(6) According to definition, biphilic species are “compounds which can
donate electrons to a substrate to form a σ-bond, and also accept them at
the same center to form a second σ- or π-bond.” See: Kirby, A. J.;
Warren, S. G. The Organic Chemistry of Phosphorus; Elsevier:
Amsterdam, 1967; p 20.
(7) For overviews, see: (a) Marsden, S. P. In Sustainable Catalysis;
Dunn, P. J.; Hii, K. K.; Krische, M. J.; Williams, M. T., Eds.; John Wiley &
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX