ChemComm
Communication
Table 2 Catalytic hydroamination of alkynes with hydrazine
3166–3169; (g) X. Zeng, R. Kinjo, B. Donnadieu and G. Bertrand,
Angew. Chem., Int. Ed., 2010, 49, 942.
9 (a) V. Lavallo, Y. Canac, C. Prasang, B. Donnadieu and G. Bertrand,
Angew. Chem., Int. Ed., 2005, 44, 5705; (b) V. Lavallo, Y. Canac,
A. DeHope, B. Donnadieu and G. Bertrand, Angew. Chem., Int. Ed.,
2005, 44, 7236; (c) R. Jazzar, R. D. Dewhurst, J.-B. Bourg,
B. Donnadieu, Y. Canac and G. Bertrand, Angew. Chem., Int. Ed.,
2007, 46, 2899; (d) R. Jazzar, J.-B. Bourg, R. D. Dewhurst,
B. Donnadieu and G. Bertrand, J. Org. Chem., 2007, 72, 3492.
10 For recent reviews on gold-catalyzed hydroamination, see:
(a) A. S. K. Hashmi, D. Riedel, M. Rudolph, F. Rominger and
T. Oeser, Chem.–Eur. J., 2012, 18, 3827; (b) A. S. K. Hashmi,
Entry R, R0
Temp. Time (h) Conversionb (%) Yield (%)
1
2
3
4
5
6
7
8
9
nButyl, H
Cyclohexyl, H
Benzyl, H
tertButyl, H
tertButyl, H
Phenyl, H
rt
rt
rt
rt
3
18
4
36
6
12
3
4
91
78
87
29
88
o5
100
100
100
100
83
71
83
—
79
—
87
95
77
82
¨
90 1C
rt
90 1C
C. Lothschu¨tz, K. Graf, T. Haffner, A. Schuster and F. Rominger,
´
Adv. Synth. Catal., 2011, 354, 1407; (c) C. Bartolome, Z. Ramiro,
´
´
´
Phenyl, H
4-Methoxyphenyl, H 90 1C
D. Garcıa-Cuadrado, P. Perez-Galan, M. Raducan, C. Bour,
A. M. Echavarren and P. Espinet, Organometallics, 2010, 29, 951;
(d) A. S. K. Hashmi, T. Hengst, C. Lothschu¨tz and F. Rominger, Adv.
Synth. Catal., 2010, 352, 1315; (e) A. S. K. Hashmi, C. Lothschu¨tz,
1-Cyclohexenyl, H
75 1C
110 1C
6
6
10a Ph, Ph
¨
C. Bohling, T. Hengst, C. Hubbert and F. Rominger, Adv. Synth.
a
b
1
CDCl3 was used as the solvent. Determined by H NMR with 1,4-di-
Catal., 2010, 352, 3001; ( f ) A. S. K. Hashmi, Angew. Chem., Int. Ed.,
2010, 49, 5232; (g) S. Sengupta and X. D. Shi, ChemCatChem, 2010,
2, 609; (h) Z. Li, C. Brouwer and C. He, Chem. Rev., 2008, 108, 3239;
(i) A. Arcadi, Chem. Rev., 2008, 108, 3266; ( j) D. J. Gorin, B. D. Sherry
and F. D. Toste, Chem. Rev., 2008, 108, 3351; (k) N. T. Patil and
Y. Yamamoto, Chem. Rev., 2008, 108, 3395; (l) R. A. Widenhoefer,
Chem.–Eur. J., 2008, 14, 5382; (m) N. Krause, V. Belting, C. Deutsch,
J. Erdsack, H. T. Fan, B. Gockel, A. Hoffmann-Roder, N. Morita and
F. Volz, Pure Appl. Chem., 2008, 80, 1063; (n) A. Fu¨rstner and
P. W. Davies, Angew. Chem., Int. Ed., 2007, 46, 3410; (o) R. A.
Widenhoefer and X. Han, Eur. J. Org. Chem., 2006, 4555.
tert butylbenzene as an internal standard.
The last result indicates that the high efficiency of 1ꢁAuCl may
be limited to terminal alkynes.
To summarize, the anti-Bredt NHC gold(I) complex 1ꢁAuCl
promotes the addition of hydrazine to terminal alkynes under
unprecedented mild conditions. Since the electronic properties
(strong s-donor and p-acceptor) of anti-Bredt NHCs are similar
to those of CAACs, the superior catalytic activity of 1ꢁAuCl can
be attributed to steric factors. In contrast to the CAAC series,
the non-hindered mono(anti-Bredt)NHCs gold complex 1ꢁAuCl
does not undergo a dismutation into a catalytically inactive
bis(carbene) gold(I) complex.
11 R. Kinjo, B. Donnadieu and G. Bertrand, Angew. Chem., Int. Ed.,
2011, 50, 5560.
12 (a) V. Lavallo, Y. Canac, B. Donnadieu, W. W. Schoeller and
G. Bertrand, Angew. Chem., Int. Ed., 2006, 45, 3488; (b) M. Melaimi,
M. Soleilhavoup and G. Bertrand, Angew. Chem., Int. Ed., 2010,
49, 8810; (c) D. Martin, M. Melaimi, M. Soleilhavoup and
G. Bertrand, Organometallics, 2011, 30, 5304; (d) O. Back,
M. Henry-Ellinger, C. D. Martin, D. Martin and G. Bertrand, Angew.
Chem., Int. Ed., 2013, 52, 2939.
13 For recent reviews on NHCs, see: (a) F. E. Hahn and M. C. Jahnke,
Angew. Chem., Int. Ed., 2008, 47, 3122; (b) G. C. Vougioukalakis and
R. H. Grubbs, Chem. Rev., 2010, 110, 1746; (c) J. C. Y. Lin, R. T. W.
Huang, C. S. Lee, A. Bhattacharyya, W. S. Hwang and I. J. B. Lin,
Chem. Rev., 2009, 109, 3561; (d) P. L. Arnold and I. J. Casely, Chem.
This work was supported by DOE (DE-FG02-09ER16069).
M.J.L.-G. thanks the university of Oviedo, the FICYT and the
Principado de Asturias for a postdoctoral Cların Research
´
Fellowship.
´
Rev., 2009, 109, 3599; (e) S. Dıez-Gonzalez, N. Marion and
Notes and references
S. P. Nolan, Chem. Rev., 2009, 109, 3612; ( f ) M. Poyatos, J. A. Mata
and E. Peris, Chem. Rev., 2009, 109, 3677; (g) C. Samojowicz,
M. Bieniek and K. Grela, Chem. Rev., 2009, 109, 3708; (h) W. A. L.
van Otterlo and C. B. de Koning, Chem. Rev., 2009, 109, 3743;
(i) S. Monfette and D. E. Fogg, Chem. Rev., 2009, 109, 3783;
( j) B. Alcaide, P. Almendros and A. Luna, Chem. Rev., 2009,
1 (a) J. P. Schirmann and P. Bourdauducq, in Ullmann’s Encyclopedia of
Industrial Chemistry, Wiley-VCH, Weinheim, 2001, vol. 18, pp. 79–96;
(b) E. F. Rothgery, in Kirk-Othmer Encyclopedia of Chemical Technology,
Wiley-VCH, Weinheim, 2004, vol. 13, pp. 562–607.
2 (a) J. P. Chen and L. L. Lim, Chemosphere, 2002, 49, 363;
(b) D. K. Simpson, Met. Finish., 1985, 83, 57.
¨
109, 3817; (k) T. Droge and F. Glorius, Angew. Chem., Int. Ed.,
3 Hydrazine has been used in catalytic processes as a reducing agent,
2010, 49, 6940.
see for examples: (a) A. Dhakshinamoorthy, M. Alvaro and H. Garcia, 14 For recent books on NHCs, see: (a) N-Heterocyclic Carbenes, From
´
Adv. Synth. Catal., 2009, 351, 2271; (b) C. Smit, M. W. Fraaije and
A. J. Minnaard, J. Org. Chem., 2008, 73, 9482.
4 (a) J. L. Klinkenberg and J. F. Hartwig, Angew. Chem., Int. Ed., 2011,
50, 86; (b) J. I. van der Vlugt, Chem. Soc. Rev., 2010, 39, 2302.
5 B. T. Heaton, C. Jacob and P. Page, Coord. Chem. Rev., 1996,
154, 193.
6 For a rare example of N–H activation of hydrazine by a metal
complex, see: Z. Huang, J. S. Zhou and J. F. Hartwig, J. Am. Chem.
Soc., 2010, 132, 11458.
laboratory Curiosities to Efficient Synthetic Tools, ed. S. Dıez-Gonzalez,
Royal Society of Chemistry Publishing, 2011; (b) N-Heterocyclic
Carbenes in Transition Metal Catalysis, ed. F. A. Glorius, Springer
Verlag, 2007; (c) N-Heterocyclic Carbenes in Synthesis, ed. S. P. Nolan,
Wiley-VCH, 2006.
15 For the influence of the p-acceptor properties of NHC ligands on the
outcome of gold-catalyzed reactions, see: M. Alcarazo, T. Stork,
A. Anoop, W. Thiel and A. Fu¨rstner, Angew. Chem., Int. Ed., 2010,
49, 2542.
7 R. J. Lundgren and M. Stradiotto, Angew. Chem., Int. Ed., 2010, 16 D. Martin, N. Lassauque, B. Donnadieu and G. Bertrand, Angew.
49, 8686. Chem., Int. Ed., 2012, 51, 6172.
´
8 (a) V. Lavallo, G. D. Frey, S. Kousar, B. Donnadieu and G. Bertrand, 17 R. Uson, A. Laguna and M. Laguna, Inorg. Synth., 1989, 26, 85.
Proc. Natl. Acad. Sci. U.S.A., 2007, 104, 13569; (b) G. D. Frey, 18 D. Tapu, D. A. Dixon and C. Roe, Chem. Rev., 2009, 109, 3385.
R. D. Dewhurst, S. Kousar, B. Donnadieu and G. Bertrand, 19 (a) S. P. Nolan, Acc. Chem. Res., 2011, 44, 91; (b) S. Gaillard,
J. Organomet. Chem., 2008, 693, 1674; (c) V. Lavallo, G. D. Frey,
C. S. J. Cazin and S. P. Nolan, Acc. Chem. Res., 2011, 45, 778.
B. Donnadieu, M. Soleilhavoup and G. Bertrand, Angew. Chem., Int. 20 Equilibrium between aminocarbenes, hexamethyldisililazane and
Ed., 2008, 47, 5224; (d) X. Zeng, G. D. Frey, R. Kinjo, B. Donnadieu
and G. Bertrand, J. Am. Chem. Soc., 2009, 131, 8690; (e) X. Zeng,
G. D. Frey, S. Kousar and G. Bertrand, Chem.–Eur. J., 2009, 15, 3056;
( f ) X. Zeng, M. Soleilhavoup and G. Bertrand, Org. Lett., 2009, 11,
their adducts has been hypothesized, see: (a) G. C. Lloyd-Jones,
R. W. Alder and G. J. J. Owen-Smith, Chem.–Eur. J., 2006, 12, 5361;
´
`
(b) S. Gomez-Bujedo, M. Alcarazo, C. Pichon, E. Alvarez,
`
R. Fernandez and J. M. Lassaletta, Chem. Commun., 2007, 1180.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.