SYNTHETIC APPLICATIONS OF PURIFIED LACCASE
175
3. Riva, S., Trends in Biotechnol., 2006, vol. 24, no. 5, p. 219.
4. Baldrian, P., FEMS Microbiol. Rev., 2006, vol. 30, p. 215.
5. (a) Chaurasia, P.K., Bharati, S.L., and Singh, S.K., Res.
Plant Sci., 2013, vol. 1, no. 2, p. 32. (b) Chaurasia, P.K.,
Yadav, R.S.S., and Yadava, S., Res. Rev. Biosci., 2013,
vol. 7, no. 2, p. 66.
stirred for 75 or 90 min. The compounds isolated
required no further purification. In the course of
oxidation no side reactions occured due to high
specificity of laccase. Thus, extraction of products by
ethyl acetate gave almost pure benzaldehyde and
substituted benzaldehydes (yields >93%).
6. Yoshida, H.J., Chem. Soc., 1883, vol. 43, p. 472.
Synthesis of 3-[6-(4-carboxyphenyl)amino-3,4-
dihydroxyphenyl] propanoic acid (Va), 3-[6-(4-
acetophenyl)amino-3,4-dihydroxyphenyl]propanoic
acid (Vb), and 3-(6-hexylamino-3,4-dihydroxy-
phenyl) propanoic acid (Vc) [25]. The pure enzyme
(1.12 IU/mL) was diluted twice with 20 mM sodium
acetate buffer, pH 5.0. 3-(3,4-Dihydroxyphenyl)pro-
pionic acid (1 mM) and 4-aminobenzoic acid (1 mM)
were added to 2 mL of the solution. The reaction
mixture was incubated for 4.15 h at room temperature
upon vigorous stirring. The reaction was monitored by
UV–Vis spectrophotometry. The reaction solution was
extracted thrice with ethyl acetate. The ethyl acetate
(20 µL) extract was injected in 4.5 × 250 mm column
(Waters HPLC Model 600E, spherisorb C18 5 UV),
eluent methanol, flow rate 0.5 mL/min. The similar
method was used for coupling of 3-(3,4-dihyd-
roxyphenyl)propionic acid with 4-aminoacetophenone
n-hexylamine, stirring time 4.30 h (IVb) and 6 h (IVc).
Yields: 90% (Va), 86% (Va), and 75% (Vc).
7. Messerschmidt, A. and Huber, R., Europ. J. Biochem.,
1990, vol. 187, p. 341.
8. Givaudon, A., Effose, A., Faure, D.P., Bouillant, M.-L.R.,
and Bally, R., FEMS Microbiol. Lett., 1993, vol. 108,
p. 205.
9. Arias, M.E., Arenas, M., Rodroguez, J., Soliveri, J.,
Ball, A.S., and Hernandez, M., Appl. Envioron.
Microbiol., 2003, vol. 69, p. 1953.
10. Suzuki, T., Endo, Y., Ito, M., Tsujibo, Y., Miamato, K.,
and Inamori, Y., Japan Patent 2003230392A2, 2003.
11. Malliga, P., Uma, L., and Subramanian, G., Microbios.,
1996, vol. 86, p. 175.
12. Perkinson, N., Smith, I., Weave, R., and Edwards, J.P.,
Insect Biochem. Mol. Biol., 2001, vol. 31, p. 57.
13. Thomas, B.R., Yonkura, M., Morgan, T.D., Czapla, T.H.,
Hopkins, T.L., an d Kramer, K.J., Insect Biochem.,
1989, vol. 19, p. 611.
14. Solomon, E.I., Baldwin, M.J., and Lowery, M.D.,
Chem. Rev., 1992, vol. 92, p. 521.
15. Bento, I., Armenia, M., Corrondo, P.F., and Lindloy, J.,
Biol. Inorg. Chem., 2006, vol. 11, p. 919.
16. Sahay, R., Yadav, R.S.S., and Yadav, K.D.S., Chinese
J. Biotechnol., 2008, vol. 24, no. 12, p. 2068.
17. Catalogue of Strains-2000, Microbial Type Culture
Collection and Gene Bank Institute of Microbial
Technology, Chandigarh, 5 ed., p.60.
18. Coll, M.P., Fernandez-Abalos, J.M., Villomueva, J.R.,
Somtamaria, R., and Perez, P., Appl. Env. Microbiol.,
1993, vol. 59, p. 2607.
CONCLUSIONS
The methyl group of toluene and its substituted
derivatives were biooxidized into the aldehyde group
under the action of ABTS as a mediator. The reaction
of 3-(3,4-dihydroxyphenyl)propionic acid with amines
leading to substitution in the aromatic ring of the acid
III was carried out under the action of purified laccase
of sajor caju MTCC-141 at room temperature and
atmospheric pressure with high yield.
19. Laemmli, U.K. and Favre, V., J. Mol. Biol., 1973,
vol. 80, p. 575.
ACKNOWLEDGMENTS
20. Polyacrylamide Gel Electrophoresis: Laboratory Tech-
niques, Pharmacia, Laboratory Separation Division,
Uppsala Sweden, 1984.
The authors acknowledge the financial support of
CSIR-HRDG, New Delhi for the award of JRF (NET)
and SRF (NET), award no. 09/057(0201)2010-EMR-I
to Dr. Pankaj Kumar Chaurasia. Dr. S.K Singh and Dr.
S.L. Bharati are thankful to CSIR and UGC Delhi for
award of RA and UGC-Post Doctoral Fellowship,
respectively.
21. Potthast, A., Rosenanu, T., Chen, C.-L., and Gratzl, J.S.,
J. Org. Chem. 1995, vol. 60, p. 4320.
22. Chaurasia, P.K., Yadava, S., Bharati, S.L., and Singh S.K.,
Synth. Comm., 2014, vol. 44, no. 17, 2535.
23. Chaurasia, P.K., Yadav, A., Yadav, R.S.S., and Yadava, S.,
J. Chem. Sci., 2013, vol. 125, no. 6, pp. 1395–1403.
REFERENCES
24. Chaurasia, P.K., Yadav, R.S.S., and Yadava, S.,
Proc. Biochem., 2014, vol. 49, p. 1647.
1. Hoegger, P.J., Kilaru, S., Jomes, T.Y., Thacker, J.R.,
and Kuees, U., FEBS J., 2006, vol. 273, p. 2308.
2. Messerschmidt, A., Multi-Copper Oxidases, Singapore:
25. Mikolasch, A., Hammer, E., Jonas, U., Popowski, K.,
Stielow, A., and Schaner, F., Tetrahedron, 2002,
vol. 58, p. 7589.
World Scientific, 1997.
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 85 No. 1 2015