ChemComm
Communication
7 S. P. Keizer, J. Mack, B. A. Bench, S. M. Gorun and M. J. Stillman,
J. Am. Chem. Soc., 2003, 125, 7067.
8 B. A. Bench, W. W. Brennessel, H. Lee and S. M. Gorun, Angew.
Chem., Int. Ed., 2002, 114, 776.
9 A. C. Beveridge, B. A. Bench, S. M. Gorun and G. J. Diebold, J. Phys.
Chem. A, 2003, 107, 5138.
10 D. Drozd, K. Szczubiałka, Ł. Łapok, M. Skiba, H. Patel, S. M. Gorun
and M. Nowakowska, Appl. Catal., B, 2012, 125, 35.
11 A. Loas, R. Gerdes, Y. Zhang and S. M. Gorun, Dalton Trans., 2011,
40, 5162.
12 F. Dumoulin, M. Durmus-, V. Ahsen and T. Nyokong, Coord. Chem.
Rev., 2010, 254, 2792.
Fig. 3 24% PAGE for the photooxidation and piperidine cleavage pattern
of (a) 6:7 and (b) 6:8. Lane 1: light, but no O2. Lane 2: no light, but with O2.
Lanes 3–13, time points from 0–12 h.
¨
13 H. Kliesch, A. Weitemeyer, S. Mu¨ller and D. Wohrle, Liebigs Ann.,
1995, 1269.
oligonucleotide backbone at oxidized sites,28 Fig. 3. In contrast, no
degradation occurred in the absence of light and/or O2, or using
unlabeled controls (see also Fig. S12, ESI†).
´
´
14 (a) A. R. Soares, J. P. Tome, M. G. Neves, A. C. Tome, J. A. Cavaleiro
and T. Torres, Carbohydr. Res., 2009, 344, 507; (b) O. I. Koifman,
M. Hannack, S. A. Syrbu and A. V. Lyubimtsev, Russ. Chem. Bull.,
2013, 62, 896; (c) Z. Iqbal, A. Lyubimtsev, M. Hanack and T. Ziegler,
Tetrahedron Lett., 2009, 50, 5681; (d) Y. Zorlu, F. Dumoulin,
D. Bouchu, V. Ahsen and D. Lafont, Tetrahedron Lett., 2010, 51,
6615.
15 X. M. Shen, B. Y. Zheng, X. R. Huang, L. Wang and J. D. Huang,
Dalton Trans., 2013, 42, 10398.
16 R. P. Hammer, C. V. Owens, S. H. Hwang, C. M. Sayes and
S. A. Soper, Bioconjugate Chem., 2002, 13, 1244.
17 M. Sibrian-Vazquez, J. Ortiz, I. V. Nesterova, F. Fernandez-Lazaro,
A. Sastre-Santos, S. A. Soper and M. G. Vicente, Bioconjugate Chem.,
2007, 18, 410.
18 A. Ogunsipea and T. Nyokong, Photochem. Photobiol. Sci., 2005,
4, 510.
19 (a) A. A. Kuznestova, A. A. Chernonosov, N. A. Kuznestov, V. V. Koval,
D. G. Knorre and O. S. Federova, Bioinorg. Chem. Appl., 2006, 1;
(b) V. V. Koval, A. A. Chernonosov, T. V. Abramova, T. M. Ivanova,
O. S. Federova, V. M. Derkacheva and E. A. Lukyantes, Nucleosides,
Nucleotides Nucleic Acids, 2001, 4, 1259.
20 Y. X. Pan, A. J. Ren, J. Zheng, W. F. Rong, H. Chen, X. H. Yan, C. Wu,
W. J. Yuan and L. Lin, Life Sci., 2007, 81, 1042.
In conclusion, an entry point into a new family of highly
fluorinated phthalocyanines was established. A highly fluorinated,
functionalized molecule was synthesized and shown to generate
1O2 without self-decomposition, underscoring its potential in PDT1
and other applications.29 Its coupling with a cancer-targeting
oligonucleotide vector proved useful in directing GRP78 DNA and
mRNA oncogene binding, and cleavage upon aerobic illumination.
The photoactive and chemically robust fluorophthalocyanine–CTO
bioconjugates encompass a new class of potential anticancer
agents. Variations in the fluorinated phthalocyanine structure,
coupled with variations in the types of vectors may facilitate the
targeting of a broad range of oncogenes and cancer types.
The financial support from the National Science Foundation
(SMG) and Seton Hall University is gratefully acknowledged.
21 Q. J. Quinones, G. G. de Ridder and S. V. Pizzo, Histol. Histopathol.,
2008, 23, 1409.
22 A. S. Lee, Cancer Res., 2007, 67, 3496.
Notes and references
23 (a) P. Patel, E. Hanawa, R. Yadav, U. Samuni, C. Marzabadi and
D. Sabatino, Bioorg. Med. Chem. Lett., 2013, 23, 5086; (b) A. Maina,
B. A. Blackman, C. J. Parronchi, E. Morozko, M. E. Bender,
A. D. Blake and D. Sabatino, Bioorg. Med. Chem. Lett., 2013, 23, 5270.
24 S. M. Gorun, B. A. Bench, G. Carpenter, M. W. Beggs, J. T. Mague
and H. E. Ensley, J. Fluorine Chem., 1998, 91, 37.
1 (a) M. Calin and S. Parasca, J. Optoelectron. Adv. Mater., 2006, 8, 1173;
(b) H. Ali and J. E. van Lier, in Handbook of Porphyrin Science:
Phototherapy, Radioimmunotherapy and Imaging, ed. K. M. Kadish,
K. M. Smith and R. Guilard, World Scientific Publishing, NJ, 2010,
vol. 4, p. 1; (c) M. Triesscheijn, P. Baas, J. H. M. Schellens and
F. A. Stewart, Oncologist, 2006, 11, 1034.
25 S. S. Erdem, I. V. Nesterova, S. A. Soper and R. P. Hammer, J. Org.
Chem., 2009, 74, 9280.
2 H. Von Tappeiner and A. Jesionek, Muench. Med. Wochenschr., 1903,
47, 2042.
3 T. J. Dougherty, G. Grindey, R. Fiel, K. R. Weishaupt and D. Boyle,
J. Natl. Cancer Inst., 1975, 55, 115.
¨
26 S. Meyer, D. Tietze, S. Rau, B. Schafer and G. Kreisel, J. Photochem.
Photobiol., A, 2007, 186, 248.
27 C. A. Chantell, M. A. Onaiyekan and M. Menakuru, J. Pept. Sci., 2012,
18, 88.
28 C. J. Burrows and J. G. Muller, Chem. Rev., 1998, 98, 1109.
29 T. Nyokong and V. Ahsen, Photosensitizers in Medicine, Environment,
and Security, Springer, NY, 2012.
4 K. Ishii, Coord. Chem. Rev., 2012, 256, 1556.
5 B. A. Bench, A. Beveridge, W. M. Sharman, G. J. Diebold, J. E. van
Lier and S. M. Gorun, Angew. Chem., Int. Ed., 2002, 41, 747.
¨
6 R. Gerdes, L. Lapok, O. Tsaryova, D. Wohrle and S. M. Gorun, Dalton
Trans., 2009, 1098.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 6309--6311 | 6311