(3′S)-epi-K-252a Analogues
Journal of Medicinal Chemistry, 2005, Vol. 48, No. 11 3783
(4) (a) Ruggeri, B. A.; Miknyoczki, S. J.; Singh, J.; Hudkins, R. L.
Role of Neurotrophin-Trk interactions in oncology: the anti-
tumor efficacy of potent and selective trk tyrosine kinase
inhibitors in pre-clinical tumor models. Curr. Med. Chem. 1999,
6, 845-857. (b) Miknyoczki, S. J.; Klein-Szanto, A. J. P.; Ruggeri,
prostate adenocarcinoma is induced by trk tyrosine kinase
inhibitor CEP-751 (KT6587). Clin. Cancer Res. 1998, 4, 1887-
1898. (c) Camoratto, A. M.; Jani, J. P.; Angeles, T. S.; Maroney,
A. C.; Sanders, C. Y.; Murakata, C.; Neff, N. T.; Vaught, J. L.;
Isaacs, J. T.; Dionne, C. A. CEP-751 inhibits trk receptor tyrosine
kinase activity in vitro and exhibits anti-tumor activity. Int. J.
Cancer 1997, 72, 673-679.
B. A. Neurotrophin-trk receptor interactions in neoplasia:
a
possible role in interstitial and perineural invasion in ductal
pancreatic cancer. Crit. Rev. Oncog. 1996, 7, 89-100. (c)
Miknyoczki, S. J.; Lang, L.; Klein-Szanto, A. J. P.; Dionne, C.
A.; Ruggeri, B. A. Neurotrophins and trk receptors in human
pancreatic ductal adrenocarcinoma: Expression patterns and
effects on in vitro invasive behavior. Int. J. Cancer 1999, 81,
417-427. (d) Miknyoczki, S. J.; Wan, W.; Chang, H.; Dobrzanski,
P.; Ruggeri, B. A.; Dionne, C. A.; Buchkovich, K. The neurotro-
phin-trk receptor axes are critical for the growth and progression
of human prostatic carcinoma and pancreatic ductal adenocar-
cinoma xenographs in nude mice. Clin. Cancer Res. 2002, 8,
1924-1931. (e) Pflug, B. R.; Dionne, C.; Kaplan, D. R.; Lynch,
J.; Djakiew, D. Expression of a high affinity nerve growth factor
receptor in the human prostate. Endocrinology 1995, 136, 262-
268.
(13) Miknyoczki, S. J.; Chang, H.; Klein-Szanto, A.; Dionne, C. A.;
Ruggeri, B. A. The Trk tyrosine kinase inhibitor CEP-701 (KT-
5555) exhibits significant antitumor efficacy in preclinical xe-
nograft models of human pancreatic ductal adenocarcinoma.
Clin. Cancer Res. 1945, 5, 2205-2212.
(14) George, D. J.; Dionne, C. A.; Jani, J.; Angeles, T.; Murakata,
D.; Lamb, J.; Isaacs, J. T. Sustained in vivo regression of
Dunning H rat prostate cancers treated with combinations of
androgen ablation and trk tyrosine kinase inhibitors, CEP-751
(KT-6587) or CEP-701 (KT-5555). Cancer Res. 1999, 59, 2395-
2401.
(15) (a) Kaneko, M.; Saito, Y.; Saito, H.; Matsumoto, T.; Matsuda,
Y.; Vaught, J. L.; Dionne, C. A.; Angeles, T. S.; Glicksman, M.
A.; Neff, N. T.; Rotella, D. P.; Kauer, J. C.; Mallamo, J. P.;
Hudkins, R. L.; Murakata, C. Neurotrophic 3,9-bis[(alkylthio-
methyl]- and -[bis(alkoxymethyl)]-K-252a derivatives. J. Med.
Chem. 1997, 40, 1863-1869. (b) Murakata, C.; Kaneko, M.;
Gessner, G.; Angeles, T. S.; Ator, M. A.; O’Kane, T. M.; McKenna,
B. A. W.; Thomas, B. A.; Mathiasen, J. R.; Saporito, M. S.;
Bozyczko-Coyne, D.; Hudkins, R. L. Mixed lineage kinase activity
of indolocarbazole analogs. Bioorg. Med. Chem. Lett. 2002, 12,
147-150. (c) Dionne, C. A.; Contreras, P. C.; Murakata, C. Use
of indolocarbazole derivatives to treat a pathological condition
of the prostate. US 5516771.
(16) Gingrich, D. E.; Hudkins, R. L. Synthesis and kinase inhibitory
activity of 3′-(S)-epi-K-252a. Bioorg. Med. Chem. Lett. 2002, 12,
2829-2831.
(17) (a) Hudkins, R. L.; Gingrich, D. 3′-Epimeric K-252 derivatives.
US 6093713. (b) Hudkins, R. L.; Gingrich, D. 3′-Epimeric K-252
derivatives for treating neurological disorders and cancer. US
6451786.
(18) Murakata, C.; Sato, A.; Takahashi, M.; Kobayashi, E.; Morimoto,
M.; Akinaga, S.; Hirata, T.; Mochida, K.; Kase, H.; Yamada, K.;
Iwashashi, K. US 4923986.
(19) Corey, E. J.; Winter, R. A. E. A new stereospecific olefin synthesis
from 1,3-diols. J. Am. Chem. Soc. 1963, 85, 2677-2680.
(20) Goekjian, P. G.; Jirousek, M. R. Protein kinase C in the
treatment of disease: signal transduction pathways, inhibitors,
and agents in development. Curr. Med. Chem. 1999, 6, 877-
903.
(21) (a) Maroney, A. C.; Sanders, C.; Neff, N. T.; Dionne, C. A. K-252b
potentiation of neurotrophin-3 is trkA specific in cells lacking
p75NTR. J. Neurochem. 1997, 68, 88-94. (b) Maroney, A. C.;
Lipfert, L.; Forbes, M. E.; Glicksman, M. A.; Neff, N. T.; Siman,
R.; Dionne, C. A. K-252a induces tyrosine phosphorylation of
the focal adhesion kinase and neurite outgrowth in human
neuroblastoma SH-SY5Y cells. J. Neurochem. 1995, 64, 540-
549.
(22) Schierling, N.; Knapp, S.; Marconi, M.; Flocco, M. M.; Cui, J.;
Pergeo, R.; Rusconi, L.; Cristiani, C. Crystal structure of the
tyrosine kinase domain of the hepatocyte growth factor receptor
c-met and its complex with the microbial alkaloid K-252a. PNAS,
2003, 100, 12654-12659.
(23) Mohammadi, M.; McMahon, G.; Sun, L. Tang, C.; Hirth, P.; Yeh,
B. K.; Hubbard, S. R.; Schlessinger, J. Structure of the tyrosine
kinase domain of fibroblast growth factor receptor in complex
with inhibitors. Science 1997, 276, 955-960.
(24) Pitt, A. M.; Lee, C. High throughput screening protein kinase
assays optimized for reaction, binding, and detection totally
within a 96-well plate. J. Biomol. Screening 1996, 1, 47-51.
(25) Rotin, D.; Margolis, B.; Mohammadi, M.; Daly, R. J.; Daum, G.;
Li, N.; Fischer, E. H.; Burgess, W. H.; Ullrich, A.; Schlessinger,
J. SH2 domains prevent tyrosine dephosphorylation of the EGF
receptor: identification of Tyr992 as the high-affinity binding
site for SH2 domains of phospholipase C gamma. EMBO J. 1992,
11, 559-567.
(5) Tagliabue, E.; Castiglioni, F.; Ghirelli, C.; Modugno, M.; Asnaghi,
L.; Somenzi, G.; Melini, C.; Menard, S. Nerve growth factor
cooperates with p185(HER2) in activating growth of human
breast carcinoma cells. J. Biol. Chem. 2000, 275, 5388-5394.
(6) (a) Djakiew, D.; Delsite, R.; Pflug, B.; Wrathall, J.; Lynch, J.
H.; Onoda, M. Regulation of growth by a nerve growth factor-
like protein which modulates paracrine interactions between a
neoplastic epithelial cell line and stromal cells of the human
prostate. Cancer Res. 1991, 51, 3304. (b) Weeraratna, A. T.;
Dalrymple, S. L.; Lamb, J. C.; Denmeade, S. R.; Miknyoczki, S.;
Dionne, C. A.; Isaacs, J. T. Pan-trk inhibition decreases me-
tastasis and enhances host survival in experimental models due
to its selective induction of apoptosis of prostate cancer cell. Clin.
Cancer Res. 2001, 7, 2237-2245. (c) Weeraratna, A. T.; Arnold,
J. T.; George, D. J.; DeMarzo, A.; Isaacs, J. T. Rational basis for
trk inhibition therapy for prostate cancer. Prostate 2000, 45,
140-148. (d) Weeraratna, A. T.; Dalrymple, S. L.; Lamb, J. C.;
Denmeade, S. R.; Miknyoczki, S.; Dionne, C. A.; Isaacs, J. T.
Pan-trk inhibition decreases metastasis and enhances host
survival in experimental models due to its selective induction
of apoptosis of prostate cancer cell. Clin. Cancer Res. 2001, 7,
2237-2245.
(7) (a) Sezaki, M.; Sasaki, T.; Nakazawa, T.; Takeda, U.; Iwata, M.;
Watanabe, T.; Koyama, M.; Kai, F.; Shomura, T.; Kojima, M. A
new antibiotic SF-2370 produced by Actinomadura. J. Antibiot.
1985, 38, 1437-1439. (b) Kase, H.; Iwahashi, K.; Matsuda, Y.
K-252a, a potent inhibitor of protein kinase C from microbial
origin. J. Antibiot. 1986, 39, 1059-1065. (c) Yasuzawa, T.; Iida,
T.; Yoshida, M.; Hirayama, N.; Takahashi, M.; Shirahata, K.;
Sano, H. The structures of novel protein kinase c inhibitors
K252a, b, c, and d. J. Antibiot. 1986, 39, 1072-1078.
(8) Angeles, T. S.; Yang, S. X.; Steffler, C.; Dionne, C. A.; Kinetics
of trkA tyrosine kinase activity and inhibition by K-252a. Arch.
Biochem. Biophys. 1998, 349, 267-274.
(9) Angeles, T. S.; Steffler, C.; Bartlett, B. A.; Hudkins, R. L.;
Stephens, R. M.; Kaplan, D. R.; Dionne, C. A. Enzyme-linked
immunosorbent assay for trkA tyrosine kinase activity. Anal.
Biochem. 1996, 206, 49-55.
(10) (a) Berg, M. M.; Sternberg, D. W.; Parada, L. F.; Chao, M. V.
K-252a inhibits nerve growth factor-induced trk proto-oncogene
tyrosine phosphorylation and kinase activity. J. Biol. Chem.
1992, 267, 13-16. (b) Tarpley, P. Lamballe, F., Barbacid, M.
K-252a is a selective inhibitor of the tyrosine protein kinase
activity of the trk family of oncogenes and neurotrophin recep-
tors. Oncogene 1992, 7, 371-381. (c) Ohmichi, M.; Decker, S.
J.; Pang, I.; Saltiel, A. R. Inhibition of the cellular actions of
nerve growth factor by staurosporine and K-252a results from
the attenuation of the activity of the trk tyrosine kinase.
Biochemistry 1992, 31, 4034-4039. (d) Muroya, K.; Hashimoto,
Y.; Hattori, S.; Nakamuru, S. Specific inhibition of NGF receptor
tyrosine kinase activity by K-252a. Biochim. Biophys. Acta 1992,
1135, 353-356. (e) Nye, S. H.; Squinto, S. P.; Glass, D. J.; Stitt,
T. N.; Hantzopoulos, P.; Macchi, M. J.; Lindsaay, N. S.; Ip, N.
Y.; Yancopoulos, G. D. K-252a and staurosporine selectively
block autophosphorylation of neurotrophin receptors and neu-
rotrophin-mediated responses. Mol. Biol. Cell 1992, 3, 677-683.
(11) Knusel, B.; Hefti, H. K-252 compounds: modulators of neurotro-
phin signal transduction. J. Neurochem. 1992, 59, 1987-1995.
(12) (a) Hudkins, R. L.; Iqbal, M.; Park, C.-H.; Goldstein, J.; Herman,
J. L.; Shek, E.; Murakata, C.; Mallamo, J. P. Prodrug esters of
the indolocarbazole CEP-751. Bioorg. Med. Chem. Lett. 1998, 8,
1873-1876. (b) Dionne, C.; Camoratto, A.; Jani, J.; Emerson,
E.; Neff, N.; Vaught, J.; Murakata, C.; Djakiew, D.; Lamb, J.;
Bova, S.; George, D.; Isaacs, J. Cell cycle independent-death of
(26) Gingrich, D. E.; Reddy, D. R.; Iqbal, M. A.; Singh, J.; Aimone,
L. D.; Angeles, T. S.; Albom, M.; Yang, S.; Meyer, S.; Robinson,
C.; Ruggeri, B. A.;. Dionne, C. A.; Vaught, J. L.; Mallamo, J. P.;
Hudkins, R. L. A new class of potent VEGF receptor tyrosine
kinase inhibitors: structure-activity relationships for a series
of 9-alkoxymethyl-12-(3-hydroxypropyl)-indeno[2,1-a]pyrrolo[3,4-
c]carbazole-5-ones and the identification of CEP-5214 and its
dimethylglycine ester prodrug clinical candidate CEP-7055. J.
Med. Chem. 2003, 46, 5375-5388.
JM040178M