Page 5 of 6
Journal of the American Chemical Society
Chem. Int. Ed. 2009, 48, 4114. (e) Barnard, C. F. J. Organometallics
2008, 27, 5402.
Chem. 2010, 75, 1047. (c) Liégault, B.; Lapointe, D.; Caron, L.; Vlasso-
va, A.; Fagnou, K. J. Org. Chem. 2009, 74, 1826. (d) Roger, J.; Doucet, H.
Adv. Synth. Catal. 2009, 351, 1977. (e) Wagner, A. M.; Sanford, M. S.
Org. Lett. 2011, 13, 288. (f) Zhao, L.; Bruneau, C.; Doucet, H. Chem-
CatChem 2013, 5, 255.
1
2
3
4
5
6
7
8
(7) (a) Fujiwara, Y.; Kawauchi, T.; Taniguchi, H. J. Chem. Soc., Chem.
Comm. 1980, 220. (b) Fujiwara, Y.; Tabaki, K.; Taniguchi, Y. Synlett
1996, 1996, 591. (c) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res.
2001, 34, 633. (d) Itahara, T. Chem. Lett.1983, 12, 127. (e) Jaouhari, R.,
Dixneuf, P.H., Lécolier, S. Tetrahedron Lett. 1986, 27, 6315. (f) Shibaha-
ra, F.; Kinoshita, S.; Nozaki, K. Org. Lett. 2004, 6, 2437.
(8) For non-palladium catalyzed approaches to arene carbonylation,
see: (a) Kunin, A. J.; Eisenberg, R. J. Am. Chem. Soc. 1986, 108, 535. (b)
Kunin, A. J.; Eisenberg, R. Organometallics 1988, 7, 2124. (c) Rosini, G.
P.; Boese, W. T.; Goldman, A. S. J. Am. Chem. Soc. 1994, 116, 9498. (d)
Sakakura, T.; Sodeyama, T.; Sasaki, K.; Wada, K.; Tanaka, M. J. Am.
Chem. Soc. 1990, 112, 7221. (e) Guang Lan, Z.; Xuan Zhen, J. Catal. Lett.
2003, 87, 225. (f) Werner, H.; Höhn, A.; Dziallas, M. Angew. Chem. 1986,
98, 1112.
(9) (a) Campo, M.A.; Larock, R.C. Org. Lett. 2000, 2, 3675. (b) Tlili,
A.; Schranck, J.; Pospech, J.; Neumann, H.; Beller, M. Angew. Chem. Int.
Ed. 2013, 52, 6293 (c) Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130,
14082. (d) Giri, R.; Lam, J.K.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132,
686. (e) Orito, K.; Horibata, A.; Nakamura, T.; Ushito, H.; Nagasaki, H.;
Yuguchi, M.; Yamashita, S.; Tokuda, M. J. Am. Chem. Soc. 2004 126,
14342. (f) Zhang, H.; Shi, R.; Gan, P.; Liu, C.; Ding, A.; Wang, Q.; Lei,
A. Angew. Chem. Int. Ed. 2012, 51, 5204. (g) Zhang, H.; Liu, D.; Chen,
C.; Liu, C.; Lei, A. Chem. Eur. J. 2011, 17, 9581.
(17) Bontemps, S.; Quesnel, J. S.; Worrall, K.; Arndtsen, B. A. Angew.
Chem. Int. Ed. 2011, 50, 8948.
(18) While ArCOI selectivity between Pd(0) and pyrrole would not be
affected by iodotoluene, ArCOI presumably reacts much more rapidly
with Pd(0). The analogous reaction of benzoyl chloride and Pd(PtBu3)2
occurs within 1 h at ambient temperature (ref. 13), while reaction with
o
pyrrole requires 115 C, 24 h (ref. 14). Iodotoluene reaction with Pd(0)
9
could therefore allow small concentrations ArCOI to build-up for a slower
reaction with pyrrole.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(19) While the reaction between pyrrole and 2a in the absence of CO is
not quantitative, the initial rate of this reaction is much slower (kobs = 1.5 x
10-3 min-1) than that in the presence of CO (kobs = 1.0 x 10-2 min-1).
o
(20) Anisoyl iodide reacts with NEtiPr2 at 125 C to form N-ethyl-N-
isopropyl-4-methoxybenzamide via a Hofmann-type elimination.
(21) (a) Carson, J. R.; McKinstry, D. N.; Wong, S. J. Med. Chem.
1971, 14, 646. (b) Reddy, L. A.; Chakraborty, S.; Swapna, R.; Bhalerao,
D.; Malakondaiah, G. C.; Ravikumar, M.; Kumar, A.; Reddy, G. S.; Na-
ram, J.; Dwivedi, N.; Roy, A.; Himabindu, V.; Babu, B.; Bhattacharya, A.;
Bandichhor, R. Org. Process Res. Dev. 2010, 14, 362.
(10) (a) Lian, Z.; Friis S. D.; Skrydstrup T. Chem. Commun., 2015, 51,
1870. For carbonylative coupling with in situ generated organocuprates
with stoichiometric copper: (b) Wu, X.-F.; Anbarasan, P.; Neumann, H.;
Beller, M. Angew. Chem. Int. Ed. 2010, 49, 7316. For in situ halogenation
of heterocycles for carbonylative coupling, see: (c) Zhao, M.-N.; Ran, L.;
Chen, M.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. ACS Catal. 2015, 5,
1210. (d) Lang, R.; Shi, L.; Li, D.; Xia, C.; Li, F. Org. Lett. 2012, 14,
4130. (e) Li, D.; Shan, S.; Shi, L.; Lang, R.; Xia, C.; Li, F. Chinese J
Catal. 2013, 34, 185.
(11) (a) Beletskaya, I. P.; Cheprakov, A. V. In Comprehensive Organ-
ometallic Chemistry III; Crabtree, R.H; Mings, D. M. P., Eds.; Elsevier:
Oxford, 2007, 411. (b) Beller, M.; Wu, X. F. Transition Metal Catalyzed
Carbonylation Reactions: Carbonylative Activation of C-X Bonds; Spring-
er: Berlin, Heidelberg, 2013.
(12) (a) Olah, G. A. Friedel-Crafts and Related Reactions; Interscience
Publishers: New York, 1963. b) Olah, G. A. Friedel-Crafts Chemistry;
John Wiley-Interscience: New York, 1973.
(13) (a) Quesnel, J. S.; Arndtsen, B. A. J. Am. Chem. Soc. 2013, 135,
16841. (b) Quesnel, J. S.; Kayser, L. V.; Fabrikant, A.; Arndtsen, B. A.
Chem. Eur. J. 2015, 21, 9550.
(14) The reaction of N-benzyl pyrrole (16 mg, 0.1 mmol) and p-anisoyl
chloride (21 mg, 0.12 mmol) with NEtiPr2 (16 mg, 0.12 mmol) in CD3CN
o
(0.7 mL) at 115 C for 24 h leads to the 2- and 3-substituted pyrrole in
43% yield (in an identical 3.2:1 ratio.
(15) 1H NMR analysis of reaction crude shows generation of ca. 4:1 ra-
tio of 2- and 3-substituted N-methylpyrrole. Only the major isomer is
isolated and characterized.
(16) (a) Nadres, E. T.; Lazareva, A.; Daugulis, O. J. Org. Chem. 2011,
76, 471. (b) Liégault, B.; Petrov, I.; Gorelsky, S. I.; Fagnou, K. J. Org.
ACS Paragon Plus Environment