Table 1. List of diol metabolites and intermediates derived from them, available from Aldrich catalog (prices are from 2001
edition)
Aldrich
catalog
number
diol metabolites
price
48,949-2 (1S-cis)-3-bromo-3,5-cyclohexadiene-1,2-diol, 96%
48,950-6 (1S-cis)-3-chloro-3,5-cyclohexadiene-1,2-diol, 98%
1 g $35.00;
5 g $139.00
1 g $31.00;
5 g $130.00
1 g $76.00
1 g $76.00
48,963-- (1S-cis)-3-phenyl-3,5-cyclohexadiene-1,2-diol, 98%
49,032-6 (1R-cis)-1,2-dihydro-1,2-naphthalenediol, 98%
Synthetically useful intermediates prepared from diols
49,035-0 [3aS-(3aR,4R,5R,7aR]-7-bromo-3a,4,5,7a-tetrahydro-2,2-dimethyl-1,3-benzodioxole-4,5-diol, 99%
49,038-5 [3aS-(3aR,4R,5R,7aR]-]-3a,4,5,7a-tetrahydro-2,2-dimethyl-1,3-benzodioxole-4,5-diol, 98%
49,085-7 [3aS-(3aR,5aR,6aR,6bR]-4-bromo-3a,5a,6a,6b-tetrahydro-2,2-dimethyloxireno[e]-1,3-benzodioxole-4,5-diol, 98%
49,088-1 [3aR-(3aR,5aâ,6aâ,6bR]-3a,5a,6a,6b-tetrahydro-2,2-dimethyloxireno[e]-1,3-benzodioxole, 98%
49,340-6 [3aS-(3aR,4R,5â,7aR]-5-azido-7-bromo-3a,4,5,7a-tetrahydro-2,2-dimethyl-1,3-benzodioxol-4-ol, 99%
49,388-0 (3aS,7R,7aS)-7,7a-dihydro-7-hydroxy-2,2-dimethyl-1,3-dibenzodioxol-4(3aH)-one, 98%
500 mg $135.00
500 mg $180.00
500 mg $160.00
500 mg $185.00
500 mg $220.00
500 mg $130.00
500 mg $135.00
500 mg $130.00
49,389-9 (3aR,7R,7aS)-7-(carbobenzyloxyamino)-7,7a-dihydro-2,2-dimethyl-1,3-dibenzodioxol-4(3aH)-one, 98%
49,390-2 (3aR,4S,7R,7aS)-7-(carbobenzyloxyamino)-3a,4,7,7a-tetrahydo-2,2-dimethyl-1,3-benzodioxol-4-ol, 98%
49,391-0 (3aR,4S,7R,7aS)-3a,4,7,7a-tetrahydro-7-(methoxycarbonylamino)-2,2-dimethyl-1,3-benzodioxol-4-ol-4-acetate, 98% 500 mg $130.00
phenyl (BDO)] or the dioxygenases and the corresponding
catechol dehydrogenases that convert either the diols or
aromatics to the corresponding catechols. The mutations of
the natural degradation pathway are shown in Figure 2.
The availability of the organisms for the fermentation now
offers the opportunity to prepare both homochiral diols and
the corresponding catechols, some of which are very difficult
to prepare in traditional ways.8 This contribution reports the
details of medium-scale synthesis of some of the more
common metabolites in the aromatic series.
A detailed description of the 10- and 15-L fermentation
follows, including the handling of metabolites. For a
complete listing of all known metabolites consult ref 5a.
Conclusions
The medium-scale fermentation of aromatics with recom-
binant organisms expressing toluene dioxygenase has been
described in detail. These fermentations yield, in some cases,
100-g quantities of metabolites, enantiopure cis-cyclohexa-
diene diols. A listing of important applications of these
compounds is provided in Table 4 divided into asymmetric
and nonasymmetric synthetic applications. We hope that this
disclosure, together with a detailed procedure, will further
stimulate the growth of this fascinating area.
Results and Discussions
The Organic Syntheses procedure for the use of P. putida
39D is straightforward and can be adapted for practice in a
laboratory not equipped for microbiology. It is useful for
small (<3 g) amounts of self-inducing substrates (toluene,
benzene. and chloro- and bromobenzene). By contrast, the
use of recombinant organisms requires more sophistication
and a relatively costly fermentor. However, the cost and
sophistication of these requirements is offset by the yields
of metabolites and the ease of handling the E. coli strains.
Table 2 lists many of the diols and Table 3 lists many of the
catechols that have been prepared by this procedure with
yields and references to the isolation and characterization
of each. The direct preparation of catechols in one step
represents an important “green” alternative to the sometime
arduous and lengthy chemical synthesis.8,17
Experimental Section
General Overview of Fermentation. The whole-cell
dihydroxylation of aromatic compounds is a three-day
process. On day one the cell cultures and fermentor are
(17) (a) Bui, V. B.; Hansen, T. V.; Stenstrom, Y.; Hudlicky, T.; Ribbons, D. W.
New J. Chem. 2001, 25, 116. (b) Bui, V. B.; Hansen, T. V.; Stenstrom, Y.;
Ribbons, D. W.; Hudlicky, T. J. Chem. Soc., Perkin Trans 1 2000, 1669.
(18) (a) Gonzalez, D.; Martinot, T.; Hudlicky, T. Tetrahedron Lett. 1999, 40,
3077. (b) Hudlicky, T.; Schilling, S.; Rinner, U.; Gonzalez, D.; Martinot,
T. J. Org. Chem. 2002, submitted.
(19) Stabile, M. R.; Hudlicky, T.; Meisels, M. L.; Butora, G.; Gum, A. G.;
Fearnley, S. P.; Thorpe, A. J.; Ellis, M. R. Chirality 1995, 7, 556.
(20) Hudlicky, T.; Boros, E. E.; Boros, C. H. Tetrahedron: Asymmetry 1993, 4,
1365.
(8) Bui, V. P.; Hansen, T. V.; Stenstrom, Y.; Hudlicky, T. Green Chem. 2000,
2, 263.
(21) Jerina, D. M.; Daly, J. W.; Jeffrey, A. M.; Gibson, D. T. Arch. Biochem.
Biophys. 1971, 142, 394.
(9) Boyd, D. R.; Hand, M. V.; Sharma, N. D.; Chima, J.; Dalton, H.; Sheldrake,
G. N. J. Chem. Soc., Chem. Commun. 1991, 1630.
(10) Boyd, D. R.; Dorrity, M. R. J.; Hand, M. V.; Malone, J. F.; Sharma, N. D.;
Dalton, H.; Gray, D. J.; Sheldrake, G. N. J. Am. Chem. Soc. 1991, 113,
666.
(22) Hudlicky, T.; Endoma, M. A. A.; Butora, G. Tetrahedron: Asymmetry 1996,
7, 61.
(23) Gonzalez, D.; Schapiro, V.; Seoane, G.; Hudlicky, T. Tetrahedron:
Asymmetry 1997, 8, 975.
(24) Hudlicky, T.; Bui. V. P.; Hansen, J.; Nguyen, M. Unpublished observations.
(25) Hudlicky, T.; Rulin, F.; Tsunoda, T.; Luna, H.; Andersen, C.; Price, J. D.
Isr. J. Chem. 1991, 31, 229.
(11) Kobal, V. M.; Gibson, D. T.; Davis, R. E.; Garza, A. J. Am. Chem. Soc.
1973, 95, 4420.
(12) Gibson, D. T.; Roberts, R. L. Wells, M. C.; Kobal, V. M. Biochem. Biophys.
Res. Commun. 1973, 50, 211.
(13) Taylor, S. C.; Turnbull, M. D. Eur. Pat. 0253485, ICI plc, 1988.
(14) Novak, B. H.; Hudlicky, T. Tetrahedron: Asymmetry 1999, 10, 2067.
(15) Stabile, M. R.; Hudlicky, T.; Meisels, M. L. Tetrahedron: Asymmetry 1995,
6, 537.
(26) (a) Hudlicky, T.; Olivo, H. F. Tetrahedron Lett. 1991, 32, 6077. (b) Johnson,
C. R.; Ple, P. A.; Su, L.; Heeg, M. J.; Adams, J. P. Synlett 1992, 388.
(27) Mandel, M.; Hudlicky, T.; Kwart, L. D.; Whited, G. M. J. Org. Chem.
1993, 58, 2331.
(28) Hudlicky, T.; Price, J. D.; Rulin, F.; Tsunoda, T. J. Am. Chem. Soc. 1990,
112, 9439.
(16) Hudlicky, T. Endoma, M. A. A.; Butora, G. J. Chem. Soc., Perkin Trans.
1 1996, 2187.
(29) Hudlicky, T.; Pitzer, K. K.; Stabile, M. R.; Thorpe, A. J.; Whited, G. M. J.
Org. Chem. 1996, 61, 4151.
526
•
Vol. 6, No. 4, 2002 / Organic Process Research & Development