SYNTHETIC COMMUNICATIONS
45
with a rubber septum and equipped with a CO2 balloon. The mixture was stirred at 25 °C
for 24 h and then passed through a short pad of silica gel with CH2Cl2 as eluent to remove
the DBU salts. The eluent was concentrated under reduced pressure and subjected column
chromatography on silica gel. Elution with a mixed solvent of CH2Cl2 and hexane (3:7)
gave dibutyl carbonate (3). Elution with CH2Cl2 gave 2a. The yield of the products was
1
determined by H NMR using an internal standard.
General procedure for the synthesis of cyclic carbonates 2
Compound 1 (2.5 mmol) and DBU (20 mmol) in DCE (1 mL) were placed in a 50-mL two-
necked flask and CO2 gas was flowed with stirring at 25 °C until the solution was changed
to a white suspension. After addition of 1-bromobutane (24 mmol), the flask was capped
with a rubber septum and equipped with a CO2 balloon. The mixture was stirred at 25 °C
for 24 h and then passed through a short pad of silica gel with CH2Cl2 as eluent to remove
the DBU salts. The eluent was concentrated under reduced pressure and the yield of the pro-
duct was determined by 1H NMR using an internal standard. The product 2 was separated by
column chromatography on silica gel using hexane and/or CH2Cl2 as eluent.
References
[1] For recent reviews on synthesis of organic carbonates from carbon dioxide, see (a) Tamura, M.;
Honda, M.; Nakagawa, Y.; Tomishige, K. J. Chem. Technol. Biotechnol. 2014, 89, 19–33;
(b) Kielland, N.; Whiteoak, C. J.; Kleij, A. W. Adv. Synth. Catal. 2013, 355, 2115–2138;
(c) Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N. RSC Adv. 2011, 1, 545–567; (d) Dai, W.-L.; Luo, S.-L.;
Yin, S.-F.; Au, C.-T. Appl. Catal. A: Gen. 2009, 366, 2–12; (e) Sakakura, T.; Kohno, K. Chem.
Commun. 2009, 1321–1330; (f) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107,
2365–2387.
[2] For recent reviews on synthesis of cyclic carbonates from carbon dioxide and oxiranes, see (a) He,
Q.; O’Brien, J. W.; Kitselman, K. A.; Tompkins, L. E.; Lindsay, E.; Curtis, G. C. T.; Kerton, F. M.
Catal. Sci. Technol. 2014, 4, 1513–1528; (b) Whiteoak, C. J.; Kleij, A. W. Synlett 2013, 24,
1748–1756; (c) Pescarmona, P. P.; Taherimehr, M. Catal. Sci. Technol. 2012, 2, 2169–2187; (d)
Li, R.; Tong, X.; Li, X.; Hu, C. Pure Appl. Chem. 2012, 84, 621–636; (e) Liu, A.-H.; Li, Y.-N.;
He, L.-N. Pure Appl. Chem. 2012, 84, 581–602; (f) Lu, X.-B.; Darensbourg, D. J. Chem. Soc.
Rev. 2012, 41, 1462–1484; (g) Decortes, A.; Castilla, A. M.; Kleij, A. W. Angew. Chem. Int. Ed.
2010, 49, 9822–9837; (h) North, M.; Pasquale, R.; Young, C. Green Chem. 2010, 12, 1514–1539;
(i) Sun, J.; Fujita, S.-I.; Arai, M. J. Organomet. Chem. 2005, 690, 3490–3497; (j) Yoshida, M.; Ihara,
M. Chem. Eur. J. 2004, 10, 2886–2893.
[3] For reviews on synthesis of cyclic carbonates from carbon dioxide and diols, see (a) Li, Y.; Junge,
K.; Beller, M. ChemCatChem 2013, 5, 1072–1074; (b) Ballivet-Tkatchenko, D.; Dibenedetto, A.
Carbon Dioxide as Chemical Feedstock; M. Aresta (Ed.); Wiley-VCH Verlag GmbH & Co. KGaA:
Weinheim, Germany, 2010; Chap. 7, pp. 169–212.
[4] (a) Hori, Y.; Nagano, Y.; Nakao, J.; Fukuhara, T.; Taniguchi, H. Chem. Expr. 1986, 1, 224–227;
(b) Hori, Y.; Nagano, Y.; Fukuhara, T.; Teramoto, S.; Taniguchi, H. Nippon Kagaku Kaishi 1987,
1408–1413.
[5] Lim, Y. N.; Lee, C.; Jang, H.-Y. Eur. J. Org. Chem. 2014, 1823–1826.
[6] Jessop, P. G.; Heldebrant, D. J.; Li, X.; Eckert, C. A.; Liotta, C. L. Nature 2005, 436, 1102.
[7] Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734–736.