Organic & Biomolecular Chemistry
Communication
ity of candidate compounds is their toxicity to normal cells.
Thus, it is important to test the cytotoxicity on normal cells in
antitumor drug discovery. Compounds 2a–p and 3 were
chosen for the selectivity test on a normal human fibroblast
(HAF) cell line using the SRB assay. The selectivity indexes (SI)
were calculated by dividing the IC50 values in HAF by the IC50
values in the prostate cancer cell lines. The results disclosed
that these 3-nitro-4-chromanones were less toxic on human
fibroblasts in comparison with the tumor cells. The most
active compound 2p (SI = 15.2 and 63.3) showed 15.2 and 63.3
times higher selectivity towards cancer cells than towards
human fibroblasts, which were more than 4-fold better than
those of cisplatin (SI = 3.7 and 13.1).
In summary, an efficient and highly diastereoselective
KOtBu-catalyzed intramolecular Michael-type cyclization of
α-nitro aryl ketones bearing unsaturated ester units was
reported. With this method, a series of 3,3-disubstituted
3-nitro 4-chromanones bearing a tertiary stereocenter were
synthesized in high to excellent yields with good to high
diastereoselectivities. KOtBu plays a crucial role both in accel-
erating the reaction rate and in improving the diastereo-
selectivities of this transformation. Some of the newly syn-
thesized 3-nitro-4-chromanones displayed promising in vitro
antiproliferative activity and good selectivity indexes (SI)
between normal cells and cancer cells, and could be used as
promising antitumor hits for further development. Further
studies on structure modification and biological evaluation are
currently ongoing.
2013, 23, 4102; (g) H. I. C. Lowe, N. J. Toyang, C. T. Watson,
K. N. Ayeah and J. Bryant, Cancer Cell Int., 2017, 17,
38.
2 (a) S. Bouchet, M. Piedfer, S. Susin, D. Dauzonne and
B. Bauvois, AIMS Mol. Sci., 2016, 3, 368; (b) A. Ceccaldi,
A. Rajavelu, C. Champion, C. Rampon, R. Jurkowska,
G. Jankevicius, C. Sénamaud-Beaufort, L. Ponger, N. Gagey,
H. D. Ali, J. Tost, S. Vriz, S. Ros, D. Dauzonne, A. Jeltsch,
D. Guianvarc’h and P. B. Arimondo, ChemBioChem, 2011,
12, 1337; (c) D. Dauzonne, B. Folléas, L. Martinez and
G. G. Chabot, Eur. J. Med. Chem., 1997, 32, 71;
(d) G. Kellermann, F. Dingli, V. Masson, D. Dauzonne,
E. S. Bendirdjian, M.-P. T. Fichou, D. Loew and
S. Bombard, FEBS Lett., 2017, 591, 863.
3 For selected leading reviews, see: (a) G. P. Ellis, Chemistry of
Heterocyclic Compounds: Chromenes, Chromanones, and
Chromones, Wiley-Interscience, New York, 2008, vol. 31;
(b) A. E. Nibbs and K. A. Scheidt, Eur. J. Org. Chem., 2012,
449; (c) S. Emami and Z. Ghanbarimasir, Eur. J. Med.
Chem., 2015, 93, 539; (d) N. X. Wang, Y. L. Xing and
Y. J. Wang, Curr. Org. Chem., 2013, 17, 1555.
4 For selected examples, see: (a) D. Enders, K. Breuer and
J. Runsink, Helv. Chim. Acta, 1996, 79, 1899; (b) J. R. de
Alaniz and T. Rovis, J. Am. Chem. Soc., 2005, 127, 6284;
(c) A. Aupoix and G. Vo-Thanh, Synlett, 2009, 1915;
(d) Z. Q. Rong, Y. Li, G. Q. Yang and S. L. You, Synlett, 2011,
1033.
5 For selected examples, see: (a) T. Ishikawa, Y. Oku,
T. Tanaka and T. Kumamoto, Tetrahedron Lett., 1999, 40,
3777; (b) L. G. Meng, H. F. Liu, J. L. Wei, S. N. Gong and
Conflicts of interest
S.
Xue,
Tetrahedron
Lett.,
2010,
51,
1748;
(c) S. V. N. Vuppalapati, L. Xia, N. Edayadulla and Y. R. Lee,
Synthesis, 2014, 46, 465.
The authors declare no conflicts of interest.
6 Y. Noda and M. Watanabe, Helv. Chim. Acta, 2002, 85, 3473.
7 For selected examples, see: (a) M. M. Biddle, M. Lin and
K. A. Scheidt, J. Am. Chem. Soc., 2007, 129, 3830;
(b) J. M. He, J. Y. Zheng, J. Liu, X. G. She and X. F. Pan, Org.
Lett., 2006, 8, 4637; (c) H. F. Wang, H. F. Cui, Z. Chai, P. Li,
C. W. Zheng, Y. Q. Yang and G. Zhao, Chem. – Eur. J., 2009,
15, 13299; (d) H. F. Cui, P. Li, Z. Chai, C. W. Zheng, G. Zhao
and S. Z. Zhu, J. Org. Chem., 2009, 74, 1400.
8 For selected examples, see: (a) X. Y. Ren, C. F. Han,
X. Q. Feng and H. F. Du, Synlett, 2017, 28, 2421;
(b) D. B. Zhao, B. Beiring and F. Glorius, Angew. Chem., Int.
Ed., 2013, 52, 8454; (c) T. Izumi and K. Suenaga,
J. Heterocycl. Chem., 1997, 34, 1535; (d) S. T. Saengchantara
and T. W. Wallace, Tetrahedron, 1990, 46, 6553;
(e) Z. H. Zhang, C. F. Pan and Z. Y. Wang, Chem. Commun.,
2007, 4686.
9 (a) Z. Q. Zhang, T. Chen and F. M. Zhang, Org. Lett., 2017,
19, 1124; (b) M. Ji, J. X. Hu, T. J. Fu, W. Y. Hua and
H. W. Hu, J. Chem. Crystallogr., 2000, 30, 99;
(c) D. R. Buckle, C. S. V. Houge-Frydrych, I. L. Pinto,
D. G. Smith and J. M. Tedder, J. Chem. Soc., Perkin Trans. 1,
1991, 63; (d) P. E. Brown, R. A. Lewis and M. A. Waring,
J. Chem. Soc., Perkin Trans. 1, 1990, 2979.
Acknowledgements
Financial support from the National Natural Science
Foundation of China (21772043) is greatly acknowledged.
References
1 For selected examples, see: (a) T. Ponnusamya,
M. Alagumuthub and S. Thamaraiselvic, Bioorg. Med.
Chem., 2018, 26, 3438; (b) C. P. Waller, A. E. Thumser,
M. K. Langat, N. R. Crouch and D. A. Mulholland,
Phytochemistry, 2013, 95, 284; (c) L. Liu, S. C. Liu, S. B. Niu,
L. D. Guo, X. L. Chen and Y. S. Che, J. Nat. Prod., 2009, 72,
1482; (d) E. B. de Melo, J. P. A. Martins, T. C. M. Jorge,
M. C. Friozi and M. M. C. Ferreira, Eur. J. Med. Chem.,
2010, 45, 4562; (e) M. Varasi, F. Thaler, A. Abate,
C. Bigogno, R. Boggio, G. Carenzi, T. Cataudella,
R. D. Zuffo, M. C. Fulco, M. G. Rozio, A. Mai, G. Dondio,
S. Minucci and C. Mercurio, J. Med. Chem., 2011, 54, 3051;
(f) B. Kupcewicz, G. B. Czerniak, M. Małecka, P. Paneth,
U. Krajewska and M. Rozalski, Bioorg. Med. Chem. Lett.,
This journal is © The Royal Society of Chemistry 2019
Org. Biomol. Chem., 2019, 17, 1062–1066 | 1065