We initially examined the total synthesis of lennoxamine.
To that end, the amine 13 was condensed with 1,3-dioxin-
5-one (14),4 and the resultant imine was acylated in the same
reaction flask with the acid chloride 155 to afford the
5-amido-1,3-dioxin 16 (Scheme 3). As expected, the dioxin
Scheme 2
Scheme 3
available by a radical- or palladium-mediated cyclization of
the bromoaryl ring with a C(13)-C(14) enamide. The
enamide, in turn, could be derived from the aldehyde 8 by
oxidative decarboxylation of an intermediate carboxylic acid.
Finally, straightforward application of our cyclization pro-
tocol via 2-amidoacrolein 9 would furnish the tetrahydro-
3-benzazepine 8. The ring system of aphanorphine could be
obtained by either an intramolecular aldol reaction of lactam
aldehyde 11 or internal alkylation of a lactam enolate with
a C(10) alkyl halide or sulfonate derivative. An intramo-
lecular aromatic substitution reaction of 2-amidoacrolein 12
would afford the tetrahydro-3-benzazepine 11. In short, these
two projected syntheses feature the two types of cyclizations
of 2-amidoacroleins (exo vs endo amide), as well as distinct
ways of manipulating the aldehyde functionalities for ad-
ditional ring formations.
16 underwent a Lewis acid catalyzed retrocycloaddition to
the 2-amidoacrolein 9 followed by an aromatic substitution
reaction to afford the desired 3-benzazepine 8. It is of interest
to note that 1H NMR analysis of the amide 8 was complicated
not only by amide rotamers but also atropisomerism around
the aryl-carbonyl single bond.6 Indeed, the atropisomers could
be partially separated by column chromatography but were
found to interconvert upon standing at room temperature.
The aldehyde functionality of 3-benzazepine 8 was converted
to a C(13)-C(14) double bond by oxidation to the corre-
sponding carboxylic acid followed by a Kochi reaction7 to
(2) For the isolation (as a racemate) from Berberis darwinii, see: (a)
Valencia, E.; Freyer, A. J.; Shamma, M.; Fajardo, V. Tetrahedron Lett.
1984, 25, 599. For previous total syntheses, see: (b) Teitel, S.; Klo¨tzer,
W.; Borgese, J.; Brossi, A. Can. J. Chem. 1972, 50, 2022. (c) Napolitano,
E.; Spinelli, G.; Fiaschi, R.; Marsili, A. J. Chem. Soc., Perkin Trans. 1
1986, 5, 785. (d) Moody, C. J.; Warrellow, G. J. Tetrahedron Lett. 1987,
28, 6089. (e) Koseki, Y.; Nagasaka, T. Chem. Pharm. Bull. 1995, 43, 1604.
(f) Rodriguez, G.; Cid, M. M.; Saa, C.; Castedo, L.; Dominguez, D. J. Org.
Chem. 1996, 61, 2780. (g) Ishibashi, H.; Kawanami, H.; Ikeda, M.; J. Chem.
Soc., Perkin Trans. 1 1997, 817. (h) Rodriguez, G.; Castedo, L.; Dominguez,
D.; Saa, C. Tetrahedron Lett. 1998, 39, 6551. (i) Koseki, Y.; Kusano, S.;
Nagasaka, T. Tetrahedron Lett. 1999, 40, 2169. (j) Couture, A.; Deniau,
E.; Grandclaudon, P.; Hoarau, C. Tetrahedron 2000, 56, 1491. (k)
Ruchirawat, S.; Sahakitpichan, P. Tetrahedron Lett. 2000, 41, 8007.
(3) For the isolation from the blue-green alga Aphanizomenon flos-aquae,
see: (a) Gulavita, N.; Hori, A.; Shimizu, Y.; Laszlo, P.; Clardy, J.
Tetrahedron Lett. 1988, 29, 4381. For previous formal or total syntheses,
see: (b) Takano, S.; Inomata, K.; Sato, T.; Ogasawara, K. J. Chem. Soc.,
Chem. Commun. 1989, 1591. (c) Takano, S.; Inomata, K.; Sato, T.;
Takahashi, M.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1990, 290.
(d) Honda, T.; Yamamoto, A.; Cui, Y.; Tsubuki, M. J. Chem. Soc., Perkin
Trans. 1 1992, 531. (e) Hulme, A. N.; Henry, S. S.; Meyers, A. I. J. Org.
Chem. 1995, 60, 1265. (f) Meyers, A. I.; Schmidt, W.; Santiago, B.
Heterocycles 1995, 40, 525 (g) Fadel, A.; Arzel, P. Tetrahedron: Asymmetry
1995, 6, 893. (h) Hallinan, K. O.; Honda, T. Tetrahedron 1995, 51, 12211.
(i) Node, M.; Imazato, H.; Kurosaki, R.; Kawano, Y.; Inoue, T.; Nishide,
K.; Fuji, K. Heterocycles 1996, 42, 811. (j) Shiotani, S.; Okada, H.;
Nakamata, K.; Yamamoto, T.; Sekino, F. Heterocycles 1996, 43, 1031. (k)
Fadel, A.; Arzel, P. Tetrahedron: Asymmetry 1997, 8, 371. (l) Shimizu,
M.; Kamikubo, T.; Ogasawara, K. Heterocycles 1997, 46, 21. (m) Tamura,
O.; Yanagimachi, T.; Kobayashi, T.; Ishibashi, H. Org. Lett. 2001, 3, 2427.
(4) Prepared in two steps from tris(hydroxymethyl)aminomethane hy-
drochloride. Hoppe, D.; Schmincke, H.; Kleemann, H.-W. Tetrahedron
1989, 45, 687.
(5) Prepared by treatment of the known 6-bromo-3,4-dimethoxybenzoic
acid with thionyl chloride. Auerbach, J.; Weissman, S. A.; Blacklock, T.
J.; Angeles, M. R.; Hoogsteen, K. Tetrahedron Lett. 1993, 34, 931.
(6) For selected examples of this type of atropisomerism, see: (a)
Cuyegkeng, M. A.; Mannschreck, A. Chem. Ber. 1987, 120, 803. (b) Pirkle,
W. H.; Welch, C. J.; Zych, A. J. J. Chromatogr. 1993, 648, 101. (c)
Thayumanavan, S.; Beak, P.; Curran, D. P. Tetrahedron Lett. 1996, 37,
2899. (d) Clayden, J.; McCarthy, C.; Cumming, J. G. Tetrahedron Lett.
2000, 41, 3279.
(7) For a review, see: (a) Sheldon, R. A.; Kochi, J. K. Org. React. 1972,
19, 279. For oxidative decarboxylation of R-amido acids with lead
tetraacetate, see: (b) Lohmar, R.; Steglich, W. Angew. Chem., Int. Ed. Engl.
1978, 17, 450. (c) Wegmann, H.; Steglich, W. Chem. Ber. 1981, 114, 2580.
(d) Lipinski, C. A.; Aldinger, C. E.; Beyer, T. A.; Bordner, J.; Burdi, D.
F.; Bussolotti, D. L.; Inskeep, P. B.; Siegel, T. W. J. Med. Chem. 1992, 35,
2169. (e) Urban, F. J.; Moore, B. S. J. Heterocycl. Chem. 1992, 29, 431.
(e) Osada, S.; Fumoto, T.; Kodama, H.; Kondo, M. Chem. Lett. 1998, 7,
675. For decarbonylation of R-amino or R-amido activated carboxylic acid
derivatives, see: (f) Herna´ndez, A. S.; Thaler, A.; Castell, J.; Rapoport, H.
J. Org. Chem. 1996, 61, 314 and references therein. (g) Mart´ın-Lo´pez, M.
3924
Org. Lett., Vol. 3, No. 24, 2001