ORGANIC
LETTERS
2007
Vol. 9, No. 25
5323-5325
Cyclic Thioanhydrides: Linchpins for
Multicomponent Coupling Reactions
Based on the Reaction of Thioacids
with Electron-Deficient Sulfonamides
and Azides
David Crich*,† and Albert A. Bowers‡
Department of Chemistry, Wayne State UniVersity, 5101 Cass AVenue, Detroit,
Michigan 48230, and Department of Chemistry, UniVersity of Illinois at Chicago,
Chicago, Illinois 60607
Received October 22, 2007
ABSTRACT
Reaction of cyclic thioanhydrides with amines affords amides functionalized with thioacids, which can be trapped in situ with electron-
deficient azides or, preferably, 2,4-dinitrobenzenesulfonamides. In this manner the cyclic thioanhydride serves as a linchpin in a three-component
coupling sequence. The use of thiomaleic anhydride and a bifunctional nucleophile extends the process to heterocycle synthesis, while a
cyclic thioanhydride prepared from aspartic acid directly provides N-functionalized asparagine derivatives.
Thioacids are useful intermediates in organic synthesis,1
having found application in peptide synthesis,2 and as
precursors to thioesters for native chemical ligation.3 Their
long-established reaction with azides yields secondary amides
and has recently come to the fore as a versatile ligation
reaction,4 while their complementary reaction with 2,4-
dinitrobenzenesulfonamides5 has been much less widely
applied. The relatively limited application of these useful
coupling reactions can be ascribed, at least in part, to the
need to prepare all but the simplest thioacids. We conceived
that this hurdle could be overcome through the nucleophilic
ring-opening of cyclic thioanhydrides with the in situ
(4) (a) Hakimelahi, G. H.; Just, G. Tetrahedron Lett. 1980, 21, 2119-
2122. (b) Rosen, T.; Lico, I. M.; Chu, D. T. W. J. Org. Chem. 1988, 53,
1580-1582. (c) Rakotomanomana, N.; Lacombe, J.-M.; Pavia, A. Carbo-
hydr. Res. 1990, 197, 318-323. (d) Dudkin, V. Y.; Crich, D. Tetrahedron
Lett. 2003, 44, 1787-1789. (e) Shangguan, N.; Katukojvala, S.; Greenberg,
R.; Williams, L. J. J. Am. Chem. Soc. 2003, 125, 77554-7755. (f) Merkx,
R.; Brouwer, A. R.; Rijkers, D. T. S.; Liskamp, R. M. J. Org. Lett. 2005,
7, 1125-1128. (g) Kolakowski, R. V.; Shangguan, N.; Williams, L. J.
Tetrahedron Lett. 2006, 47, 1163-1166. (h) Barlett, K. N.; Kolakowski,
R. V.; Katukojvala, S.; Williams, L. J. Org. Lett. 2006, 8, 823-826. (i)
Kolakowski, R. V.; Shangguan, N.; Sauers, R. R.; Williams, L. J. J. Am.
Chem. Soc. 2006, 128, 5695-5702. (j) Zhu, X. M.; Pachamuthu, K.;
Schmidt, R. R. Org. Lett. 2004, 6, 1083-1085. (k) Merkx, R.; van Haren,
M. J.; Rijkers, D. T. S.; Liskamp, R. M. J. J. Org. Chem. 2007, 72, 4574-
4577. (l) McKervey, M.; O’Sullivan, M. B.; Myers, P. L.; Green, R. H. J.
Chem. Soc., Chem. Commun. 1993, 94-96.
† Wayne State University.
‡ University of Illinois at Chicago.
(1) (a) Niyomura, O.; Kato, S. Top. Curr. Chem. 2005, 251, 1-12. (b)
Kato, S.; Murai, T. In The Chemistry of Acid DeriVatiVes; Patai, S., Ed.;
Wiley: Chichester, 1992; Vol. 2, pp 803-847. (c) Bauer, W.; Ku¨hlein, K.
In Methoden der Organischen Chemie, 4th Ed; Falbe, J., Ed.; Thieme:
Stuttgart, 1985; Vol. E5, pp 832-890.
(2) (a) Yamashiro, D.; Blake, J. Int. J. Pept. Protein Res. 1981, 18, 383-
392. (b) Mitin, Y. V.; Zapevalova, N. P. Int. J. Pept. Protein Res. 1990,
35, 352-356.
(3) (a) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H.
Science 1994, 266, 776. (b) Dawson, P. E.; Kent, S. B. H. Annu. ReV.
Biochem. 2000, 69, 923-960. (c) Yeo, D. S. Y.; Srinivasan, R.; Chen, G.
Y.; Yao, S. Q. Chem. Eur. J. 2004, 10, 4664-4672. (d) Macmillan, D.
Angew. Chem., Int. Ed. 2006, 45, 7668-7672.
(5) (a) Messeri, T.; Sternbach, D. D.; Tomkinson, N. C. O. Tetrahedron
Lett. 1998, 39, 1669-1672. (b) Messeri, T.; Sternbach, D. D.; Tomkinson,
N. C. O. Tetrahedron Lett. 1998, 39, 1673-1676. (c) Crich, D.; Sana, K.;
Guo, S. Org. Lett. 2007, 9, 4423-4426.
10.1021/ol702570x CCC: $37.00
© 2007 American Chemical Society
Published on Web 11/03/2007