10.1002/anie.202002861
Angewandte Chemie International Edition
COMMUNICATION
(S), 1997, 400–401; d) M. Yu, H. Jing, X. Liu, X. Fu, Organometallics
2015, 34, 5754–5758 (both Rh); e) Y. Kikukawa, Y. Kuroda, K.
Yamaguchi, N. Mizuno, Angew. Chem. 2012, 124, 2484–2487; Angew.
Chem. Int. Ed. 2012, 51, 2434–2437 (Ag); f) Y. Lee, D. Seomoon, S. Kim,
H. Han, S. Chang, P. H. Lee, J. Org. Chem. 2004, 69, 1741–1743 (Ir); g)
E. A. Ison, R. A. Corbin, M. M. Abu-Omar, J. Am. Chem. Soc. 2005, 127,
11938–11939 (Re).
In summary, we have engineered a fully genetically encoded
catalyst capable of functionalizing silicon-containing compounds
inside and outside cells, expanding our ability to manipulate this
element in living systems. Three rounds of directed evolution
created a highly active variant with four mutations from wild-type
P450BM3. This work demonstrates that P450s are easily evolvable
for unnatural hydrosilanes, although yields are currently limited for
sterically hindered and trialkyl silanols. Furthermore, this
renewable, iron-based biocatalyst shows high selectivity for
forming silanols instead of disiloxanes; it also favors Si–H over
the native C–H and C=C oxidation. This ability to enzymatically
oxidize hydrosilanes in concert with previously identified
biocatalysts for C–Si bond formation[18] could offer access to a
range of useful organosilicon compounds in engineered microbial
systems and open more sustainable paths to producing the
silicon-containing molecules that have become ubiquitous in our
modern world.
[9]
Base metals in hydrolytic processes: a) E. Matarasso-Tchiroukhine, J.
Chem. Soc., Chem. Commun. 1990, 681–682 (Cr, no selectivity for the
silanol); b) U. Schubert, C. Lorenz, Inorg. Chem. 1997, 36, 1258–1259
(Cu, low selectivity for the silanol); c) A. K. Liang Teo, W. Y. Fan, Chem.
Commun. 2014, 50, 7191–7194 (Fe). A Te complex with O2: d) Y. Okada,
M. Oba, A. Arai, K. Tanaka, K. Nishiyama, W. Ando, Inorg. Chem. 2010,
49, 383–385. A Ti zeolite with H2O2: e) W. Adam, H. Garcia, C. M.
Mitchell, C. R. Saha-Möller, O. Weichold, Chem. Commun. 1998, 2609–
2610. A Mn complex with H2O2: f) K. Wang, J. Zhou, Y. Jiang, M. Zhang,
C. Wang, D. Xue, W. Tang, H. Sun, J. Xiao, C. Li, Angew. Chem. 2019,
131, 6446–6450; Angew. Chem. Int. Ed. 2019, 58, 6380–6384. Cu- or
Co-catalysis with O2: g) A. V. Arzumanyan, I. K. Goncharova, R. A.
Novikov, S. A. Milenin, K. L. Boldyrev, P. N. Solyev, Y. V. Tkachev, A. D.
Volodin, A. F. Smol’yakov, A. A. Korlyukov, A. M. Muzafarov, Green
Chem. 2018, 20, 1467–1471. For heterogeneous, hydrolytic Ni-catalysis,
see ref. [8a].
Acknowledgements
[10] Metal-free protocols, both at pH 11: a) D. Limnios, C. G. Kokotos, ACS
Catal. 2013, 3, 2239–2243; b) A. T. Kelly, A. K. Franz, ACS Omega 2019,
4, 6295–6300.
This work was supported by the Dow University Partnership
Initiative (227027AO), the Rothenberg Innovation Initiative (RI2)
Program (F.H.A.), the NIH National Institute for General Medical
[11] P. Manikandan, S. Nagini, Curr. Drug Targets 2018, 19, 38–54.
[12] C. J. C. Whitehouse, S. G. Bell, L.-L. Wong, Chem. Soc. Rev. 2012, 41,
1218–1260.
Sciences
GM-124480
(K.N.H.),
the
Deutsche
Forschungsgemeinschaft (DFG) Postdoctoral Fellowship (BA
6604/1-1 to S.B.), and the Spanish MINECO (JdC-I contract IJCI-
2017-33411 to M.G.-B.). We thank N. W. Goldberg, Dr. S. B. J.
Kan, and A. M. Knight for productive discussions, and Dr. Zhijun
Jia for experimental assistance.
[13] J. Rittle, M. T. Green, Science 2014, 330, 933–938.
[14] a) E. M. Isin, F. P. Guengerich, Biochim. Biophys. Acta. 2007, 3, 314–
329; b) P. R. Ortiz de Montellano, Chem. Rev. 2010, 110, 932–948; c) S.
Shaik, S. Cohen, Y. Wang, H. Chen, D. Kumar, W. Thiel, Chem. Rev.
2010, 210, 949–1017.
[15] P. Treguer, D. M. Nelson, A. J. V. Bennekom, D. J. DeMaster, A.
Leynaert, B. Quéguiner, Science 1995, 268, 375–379.
[16] M. B. Frampton, P. M. Zelisko, Chem. Asian J. 2017, 12, 1153–1167.
[17] M. B. Frampton, P. M. Zelisko, Silicon 2009, 1, 147–163.
[18] S. B. J. Kan, R. D. Lewis, K. Chen, F. H. Arnold, Science 2016, 354,
1048–1051.
Keywords: biocatalysis • CYP102A1 • monooxygenation •
silanols • synthetic methods
[1]
a) M. Jeon, J. Han, J. Park, ACS Catal. 2012, 2, 1539–1549; b) V.
Chandrasekhar, R. Boomishankar, S. Nagendran, Chem. Rev. 2004,
104, 5847–5910.
[19] The oxidation of hydrosilanes in rats was reported almost fifty years ago,
but an enzyme responsible for this transformation has never been
identified: R. J. Fessenden, R. A. Hartman, J. Med. Chem. 1970, 13, 52–
54.
[2]
A. Colas, Silicones: Preparation, Properties and Performance; Dow
Corning, Life Sciences, 2005.
[20] S. T. Jung, R. Lauchli, F. H. Arnold, Curr. Opin. Biotech. 2011, 22, 809–
817.
[3]
a) S. E. Denmark, C. S. Regens, Acc. Chem. Res. 2009, 41, 1486–1499;
b) M. Mewald, J. A. Schiffner, M. Oestreich, Angew. Chem. 2012, 124,
1797–1799; Angew. Chem. Int. Ed. 2012, 51, 1763–1765; c) S. E.
Denmark, A. Ambrosi, Org. Process Res. Dev. 2015, 19, 982–994.
Especially silanediols in catalysis: a) K. M. Diemoz, J. E. Hein, S. O.
Wilson, J. C. Fettinger, A. K. Franz, J. Org. Chem. 2017, 82, 6738–6747
and references cited therein. b) A. G. Schafer, J. M. Wieting, T. J. Fisher,
A. E. Mattson, Angew. Chem. 2013, 125, 11531–11534; Angew. Chem.
Int. Ed. 2013, 52, 11321–11324.
[21] H. Li, T. L. Poulos, Biochim. Biophys. Acta 1999, 1441, 141–149.
Whereas F87, A328 and L181 are important for substrate recognition,
A184 plays a role in the thermostability of P450BM3 variants. See Ref. [20].
[22] D. C. Haines, D. R. Tomchick, M. Machius, J. A. Peterson, Biochemistry
2001, 40, 13456–13465.
[4]
[23] S. Kille, C. G. Acevedo-Rocha, L. P. Parra, Z. G. Zhang, D. J. Opperman,
M. T. Reetz, J. P. Acevedo, ACS Synth. Biol. 2013, 2, 83–92.
[24] Examples for the mutation of site A328: a) G. Roiban, M. T. Reetz, Chem.
Comm. 2015, 51, 2208–2224 and cited references. For a recent example,
see: b) H. Zhou, B. Wang, F. Wang, X. Yu, L. Ma, A. Li, M. T. Reetz,
Angew. Chem. 2019, 131, 774–778; Angew. Chem. Int. Ed. 2019, 58,
764–768. See also Ref. [20].
[5]
a) A. K. Franz, S. O. Wilson, J. Med. Chem. 2013, 56, 388–405; b) R.
Ramesh, D. S. Reddy, J. Med. Chem. 2018, 61, 3779–3798.
J. A. Cella, J. C. Carpenter, J. Organomet. Chem. 1994, 480, 23–36.
Selected examples: a) P. D. Lickiss, R. Lucas, J. Organomet. Chem.
1995, 521, 229–234 (KMnO4); b) K. Valliant-Saunders, E. Gunn, G. R.
Shelton, D. A. Hrovat, W. T. Borden, J. M. Mayer, Inorg. Chem. 2007, 46,
5212–5219 (OsO4); c) W. Adam, R. Mello, R. Curci, Angew. Chem. 1990,
102, 916–917; Angew. Chem. Int. Ed. Engl. 1990, 29, 890–891
(dioxirans); d) L. H. Sommer, L. A. Ulland, G. A. Parker, J. Am. Chem.
Soc. 1972, 94, 3469–3471 (peracids). See also Ref [1].
[6]
[7]
[25] For the importance of sites 181 and 184, see for example: K. Zhang, B.
M. Shafer, M. D. Denars II, H. A. Stern, R. Fasan, J. Am. Chem. Soc.
2012, 134, 18695–19704.
[26] Double-bond epoxidation was observed for example in a manganese-
catalyzed protocol with H2O2 as oxidant, see Ref. [9f].
[27] a) R. J. P. Corriu, C. Guerin, J. Organomet. Chem. 1980, 198, 231–320;
b) C. Chuit, R. J. P. Corriu, C. Reye, J. C. Young, Chem. Rev. 1993, 93,
1371–1448.
[8]
The use of Pt, Pd, Au, Ag, Ru and Ni as heterogeneous catalysts is
reported. Leading reference: a) G. H. Barnes, Jr., N. E. J. Daughenbaugh,
J. Org. Chem. 1966, 31, 885–887. See also Ref [1]. Hydrolytic,
homogeneous catalysis: b) M. Lee, S. Ko, S. Chang, J. Am. Chem. Soc.
2000, 122, 12011–12012 (Ru); c) M. Shi, K. M. Nicholas, J. Chem. Res.
[28] For a comparison of Si–H and C–H bond strengths, see a) R. Walsh, Acc.
Chem. Res. 1981, 14, 246–252; b) S. J. Blanksby, G. B. Ellison, Acc.
Chem. Res. 2003, 36, 255–263 (BDE of benzylic C–H bonds: 89.8
4
This article is protected by copyright. All rights reserved.