Paper
RSC Advances
E. L. Parksa, A. H. Cocolasa, A. Weavera, N. P. Seeramb and
G. E. Henrya, Inorg. Chim. Acta, 2020, 505, 119495–119502; (c)
Y. Yua, Y. Liub, R. Shic, D. Zhanga, C. Lia and J. Shib, Bioorg.
Chem., 2020, 98, 103644–103649.
Conflicts of interest
There are no conicts to declare.
13 (a) K. M. Adki and Y. A. Kulkarni, Life Sci., 2020, 250, 117544–
117561; (b) Y. S. Hu, X. Han, P. J. Yu, M. M. Jiao, X. H. Liu and
J. B. Shi, Bioorg. Chem., 2020, 98, 103735–103748; (c)
H. Zhang, X. Geng, Z. Li, Y. Li, K. Xu, H. Wu, J. Xie, P. Sun,
S. Wei and M. Qiao, Front. Psychiatr., 2020, 11, 295–308; (d)
Y. Peng, X. Zheng, Z. Fan, H. L. Zhou, X. X. Zhu,
G. J. Wang and Z. H. Liu, Phytomedicine, 2019, 68, 1–48.
14 (a) C. S. Jia, D. D. Cao, S. P. Ji, X. M. Zhang and B. Muhoza,
Food Hydrocolloids, 2020, 104, 105717–105769; (b)
H. G. Bilgicli, A. Kestane, P. Taslimi, O. Karabay, A. Bytyqi-
Damoni, M. Zengin and I. Gulcin, Bioorg. Chem., 2019, 88,
102931–102937; (c) M. Govindarajan, M. Rajeswary,
S. L. Hoti, A. Bhattacharyya and G. Benelli, Parasitol. Res.,
2016, 115, 807–815.
15 (a) A. Rohatgi, A. Khera, J. D. Berry, E. G. Givens, C. R. Ayers,
K. E. Wedin, I. J. Neeland, I. S. Yuhanna, D. R. Rader, J. A. de
Lemos and P. W. Shaul, N. Engl. J. Med., 2014, 371, 2383–
2393; (b) S. R. Pfeffer, J. Biol. Chem., 2019, 294, 1706–1709;
(c) B. M. Castellano, A. M. Thelen, O. Moldavski, M. Feltes,
R. E. N. Van der Welle, L. Mydock-McGrane, X. Jiang,
R. J. Van Eijkeren, O. B. Davis, S. M. Louie, R. M. Perera,
D. F. Covey, D. K. Nomura, D. S. Ory and R. Zoncu, Science,
2017, 355, 1306–1311.
Acknowledgements
We gratefully acknowledge the National Natural Science Foun-
dation of China (No. 21978270).
Notes and references
1 (a) E. Boldyreva, Chem. Soc. Rev., 2013, 42, 7719–7738; (b)
L. Takacs, Chem. Soc. Rev., 2013, 42, 7649–7659; (c)
J. L. Howard, Q. Cao and D. L. Browne, Chem. Sci., 2018, 9,
3080–3094.
´
2 (a) J. G. Hernandez and C. Bolm, J. Org. Chem., 2017, 82,
4007–4019; (b) S. Tabasso, D. Carnaroglio, E. C. Gaudino
and G. Cravotto, Green Chem., 2015, 17, 684–693; (c)
R. B. N. BaigandR and S. Varma, Chem. Soc. Rev., 2012, 41,
1559–1584.
3 (a) L. Takacs, Prog. Mater. Sci., 2002, 47, 355–414; (b)
´
T. Friscic, S. L. James, E. V. Boldyreva, C. Bolm, W. Jones,
J. Mack, J. W. Steedh and K. S. Suslick, Chem. Commun.,
2015, 51, 6248–6256.
4 (a) J. B. Yu, Y. Zhang, Z. J. Jiang and W. K Su, J. Org. Chem.,
´
2016, 81, 11514–11520; (b) H. C Cheng, J. G. Hernandez
and C. Bolm, Org. Lett., 2017, 19, 6284–6287; (c) H. Xu,
H. W Liu, K. Chen and G. W Wang, J. Org. Chem., 2018, 83,
6035–6049.
16 (a) T. B. Ayeleso, M. G. Matumba and E. Mukwevho,
Molecules, 2017, 22, 1915–1930; (b) J. Pollier and
ˇ
5 (a) A. Zapf and M. Beller, Top. Catal., 2002, 19, 101–109; (b)
J. Stetter and F. Lieb, Angew. Chem., Int. Ed., 2000, 39,
1724–1728; (c) N. Marion, S. Diez-Gonzalez and S. P. Nolan,
Angew. Chem., Int. Ed., 2007, 46, 2988–3000.
A. Goossens, Phytochemistry, 2012, 77, 10–15; (c) L. Ziberna,
ˇ
D. Samec, A. Mocan, S. F. Nabavi, A. Bishayee,
A. A. Farooqi, A. Sureda and S. M. Nabavi, Int. J. Mol. Sci.,
2017, 18, 643–658.
6 (a) J. S. Carey, D. Laffffan, C. Thomson and M. T. Williams,
Org. Biomol. Chem., 2006, 4, 2337–2347; (b) R. W. Dugger,
J. A. Ragan and D. H. B. Ripin, Org. Process Res. Dev., 2005,
9, 253–258; (c) K. C. K. Swamy, N. N. B. Kumar,
E. Balaraman and K. V. P. P. Kumar, Chem. Rev., 2009, 109,
2551–2651; (d) T. Yuen, S. B. Sze and P. H. Toy, J. Am.
Chem. Soc., 2006, 128, 9636–9637.
7 (a) K. Ishihara, S. Ohara and H. Yamamoto, Tetrahedron,
2002, 58, 8179–8188; (b) N. Bhatt, A. Patel, P. Selvam and
K. Sidhpuria, J. Mol. Catal., 2007, 275, 14–24; (c)
N. Sanchez, M. Martinez, J. Aracil and A. Corma, J. Am. Oil
Chem. Soc., 1992, 69, 1150–1153; (d) E. Heykants,
W. H. Verrelst, R. F. Parton and P. A. Jacobs, Stud. Surf. Sci.
Catal., 1997, 105, 1277–1284.
8 D. A. Watson, X. X. Fan and S. L. Buchwald, J. Org. Chem.,
2008, 73, 7096–7101.
9 N. Iranpoor, H. Firouzabadi, D. Khalili and S. Motevalli, J.
Org. Chem., 2011, 76, 2277–2281.
10 G. C. Li, P. Lei and M. Szostak, Org. Lett., 2018, 20(18), 5622–
5625.
11 B. H. Shih, R. S. Basha and C. F. Lee, ACS Catal., 2019, 9,
8862–8866.
17 I. O. Poon, D. S. L. Chow and D. Liang, Am. J. Health-Syst.
Pharm., 2006, 63, 2128–2134.
18 (a) S. Tanii, M. Arisawa and M. Yamaguchi, Chem. Commun.,
2019, 55, 14078–14080; (b) A. N. Holding and J. B. Spencer,
ChemBioChem, 2008, 9, 2209–2214.
´
19 (a) R. H. Beddoe, K. G. Andrews, V. Magne, J. D. Cuthbertson,
J. Saska, A. L. Shannon-Little, S. E. Shanahan, H. F. Sneddon
and R. M. Denton, Science, 2019, 365, 910–914; (b)
O. Mitsunobu, Synthesis, 1981, 1–28; (c) O. Mitsunobu and
M. Yamada, Bull. Chem. Soc. Jpn., 1967, 40, 2380–2382; (d)
J. An, R. M. Denton, T. H. Lambert and E. D. Nacsa, Org.
Biomol. Chem., 2014, 12, 2993–3003.
20 (a) P. J. Garegg and B. Samuelsson, J. Chem. Soc., Chem.
Commun., 1979, 978–980; (b) E. D. Matveeva,
T. A. Podrugina, N. G. Sandakova and N. S. Zerov, Russ.
J. Org. Chem., 2004, 40, 1469–1472; (c) C. A. Tolman, Chem.
Rev., 1977, 77, 313–348.
21 (a) S. M. A. Kedrowski and D. A. Dougherty, Org. Lett., 2010,
12, 3990–3993; (b) A. K. Bhattacharya and G. Thyagarajan,
Chem. Rev., 1981, 81, 415–430; (c) M. Sekine, A. Kume and
T. Hata, Tetrahedron Lett., 1981, 22, 3617–3620.
12 (a) C. F. Bagamboula, M. Uyttendaele and J. Debevere, Food
Microbiol., 2004, 21, 33–42; (b) M. H. Havasia, A. J. Resslera,
© 2021 The Author(s). Published by the Royal Society of Chemistry
RSC Adv., 2021, 11, 5080–5085 | 5085