10.1002/anie.202013022
Angewandte Chemie International Edition
COMMUNICATION
[1]
For selected reviews, see: a) M. P. Sibi, S. Manyem, J. Zimmerman,
Chem. Rev. 2003, 103, 3263; b) X. Cui, X. P. Zhang, “Cobalt-Mediated
Carbene Transfer Reactions.” in Contemporary Carbene Chemistry,
eds. R. A. Moss, M. P. Doyle, John Wiley & Sons, 2013, pp. 491; c) C.
K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113,
5322; d) K. L. Skubi, T. R. Blum, T. P. Yoon, Chem. Rev. 2016, 116,
10035; e) S. R. Chemler, S. D. Karyakarte, Z. M. Khoder, J. Org. Chem.
2017, 82, 11311; f) L. Zhang, E. Meggers, Acc. Chem. Res. 2017, 50,
320; g) G. E. M. Crisenza, D. Mazzarella, P. Melchiorre, J. Am. Chem.
Soc. 2020, 142, 5461.
to the tetrasubstituted chiral allene (4−68), while the complex I
was generated for the next catalytic cycle.
[2]
For selected reviews, see: a) A. H. Cherney, N. T. Kadunce, S. E.
Reisman, Chem. Rev. 2015, 115, 9587; b) J. Choi, G. C. Fu, Science
2017, 356, eaaf7230; c) G. C. Fu, ACS Cent. Sci. 2017, 3, 692; d) F.
Wang, P. Chen, G. Liu, Acc. Chem. Res. 2018, 51, 2036; e) Q.-S. Gu,
Z.-L. Li, X.-Y. Liu, Acc. Chem. Res. 2020, 53, 170; f) Z.-L. Li, G.-C.
Fang, Q.-S. Gu, X.-Y. Liu, Chem. Soc. Rev. 2020, 49, 32.
[3]
[4]
M. M. Hansmann, M. Melaimi, G. Bertrand, J. Am. Chem. Soc. 2017,
139, 15620.
a) M. Poutsma, P. Ibarbia, J. Org. Chem. 1970, 35, 4038; b) F.-H.
Wartenberg, H. Junga, S. Blechert, Tetrahedron Lett. 1993, 34, 5251;
c) C. Alameda-Angulo, B. Quiclet-Sire, S. Z. Zard, Tetrahedron Lett.
2006, 47, 913.
[5]
For selected reviews and examples of the generation of allenyl radicals
from 1,3-enynes, see: a) L. Fu, S. Greßies, P. Chen, G. Liu, Chin. J.
Chem. 2020, 38, 91; b) H. Shen, H. Xiao, L. Zhu, C. Li, Synlett 2020, 31,
41; c) X. Zhu, W. Deng, M.-F. Chiou, C. Ye, W. Jian, Y. Zeng, Y. Jiao, L.
Ge, Y. Li, X. Zhang, H. Bao, J. Am. Chem. Soc. 2019, 141, 548; d) K.-F.
Zhang, K.-J. Bian, C. Li, J. Sheng, Y. Li, X.-S. Wang, Angew. Chem. Int.
Ed. 2019, 58, 5069; Angew. Chem. 2019, 131, 5123; e) F. Wang, D.
Wang, Y. Zhou, L. Liang, R. Lu, P. Chen, Z. Lin, G. Liu, Angew. Chem.
Int. Ed. 2018, 57, 7140; Angew. Chem. 2019, 130, 7258; f) J. Terao, F.
Bando, N. Kambe, Chem. Commun. 2009, 7336.
Scheme 3. Mechanistic studies and proposal.
In summary, we have described a copper-catalyzed three-
component asymmetric radical 1,4-carboalkynylation of 1,3-
enynes, providing an efficient tool for the construction of diverse
tetrasubstituted chiral allenes from easily available starting
materials. The key to the success is the strategic utilization of a
cinchona alkaloid-derived N,N,P-ligand to enhance the reducing
capability of copper catalyst for reaction initiation and further
achieve the enantiocontrol over the structurally unique allenyl
radical. A wide range of (hetero)aryl and alkyl alkynes and 1,3-
enynes as well as various readily available radical precursors
are easily accommodated in this reaction. Further extension of
the asymmetric coupling of allenyl radicals to other nucleophiles
and detailed mechanistic studies are ongoing in our laboratory.
[6]
a) S. Yu, S. Ma, Angew. Chem. Int. Ed. 2012, 51, 3074; Angew. Chem.
2012, 124, 3128; b) P. Rivera-Fuentes, F. Diederich, Angew. Chem. Int.
Ed. 2012, 51, 2818; Angew. Chem. 2012, 124, 2872; c) F. Cai, X. Pu, X.
Qi, V. Lynch, A. Radha, J. M. Ready, J. Am. Chem. Soc. 2011, 133,
18066; d) X. Pu, X. Qi, J. M. Ready, J. Am. Chem. Soc. 2009, 131,
10364; e) S. Ma, Chem. Rev. 2005, 105, 2829; f) A. Hoffmann-Röder,
N. Krause, Angew. Chem. Int. Ed. 2004, 43, 1196; Angew. Chem. 2004,
116, 1216.
[7]
[8]
For selected reviews, see: a) X. Huang, S. Ma, Acc. Chem. Res. 2019,
52, 1301; b) W.-D. Chu, Y. Zhang, J. Wang, Catal. Sci. Technol. 2017,
7, 4570; c) J. Ye, S. Ma, Org. Chem. Front. 2014, 1, 1210; d) R. K. Neff,
D. E. Frantz, ACS Catal. 2014, 4, 519; e) W. Zhang, J. M. Ready,
ChemCatChem 2013, 5, 3497; f) M. Ogasawara, Tetrahedron:
Asymmetry 2009, 20, 259.
Acknowledgements
For selected examples, see: a) Y. Liao, X. Yin, X. Wang, W. Yu, D.
Fang, L. Hu, M. Wang, J. Liao, Angew. Chem. Int. Ed. 2020, 59, 1176;
Angew. Chem. 2020, 132, 1192; b) W.-F. Zheng, W. Zhang, C. Huang,
P. Wu, H. Qian, L. Wang, Y.-L. Guo, S. Ma, Nat. Catal. 2019, 2, 997; c)
G. Wang, X. Liu, Y. Chen, J. Yang, J. Li, L. Lin, X. Feng, ACS Catal.
2016, 6, 2482; d) Z. Li, V. Boyarskikh, J. H. Hansen, J. Autschbach, D.
G. Musaev, H. M. L. Davies, J. Am. Chem. Soc. 2012, 134, 15497.
For selected examples, see: a) X. Li, J. Sun, Angew. Chem. Int. Ed.
2020, 59, 17049; Angew. Chem. 2020, 132, 17197; b) D. Qian, L. Wu,
Z. Lin, J. Sun, Nat. Commun. 2017, 8, 567; c) A. Tap, A. Blond, V. N.
Wakchaure, B. List, Angew. Chem. Int. Ed. 2016, 55, 8962; Angew.
Chem. 2016, 128, 9108; d) C. T. Mbofana, S. J. Miller, J. Am. Chem.
Soc. 2014, 136, 3285; e) T. Hashimoto, K. Sakata, F. Tamakuni, M. J.
Dutton, K. Maruoka, Nat. Chem. 2013, 5, 240.
Financial support from the National Natural Science Foundation
of China (Nos. 21722203, and 21831002), Guangdong
Provincial Key Laboratory of Catalysis (No. 2020B121201002),
Guangdong Innovative Program (No. 2019BT02Y335), and
SUSTech Special Fund for the Construction of High-Level
Universities (No. G02216303) are acknowledged. The authors
appreciate the assistance of SUSTech Core Research Facilities.
[9]
Conflict of interest
[10] For selected recent examples on our works, see; a) Y.-F. Cheng, J.-R.
Liu, Q.-S. Gu, Z.-L. Yu, J. Wang, Z.-L. Li, J.-Q. Bian, H.-T. Wen, X.-J.
Wang, X. Hong, X.-Y. Liu, Nat. Catal. 2020, 3, 401; b) C.-J. Yang, C.
Zhang, Q.-S. Gu, J.-H. Fang, X.-L. Su, L. Ye, Y. Sun, Y. Tian, Z.-L. Li,
X.-Y. Liu, Nat. Catal. 2020, 3, 539; c) X.-T. Li, L. Lv, T. Wang, Q.-S. Gu,
G.-X. Xu, Z.-L. Li, L. Ye, X. Zhang, G.-J. Cheng, X.-Y. Liu, Chem 2020,
6, 1692.
The authors declare no conflict of interest.
Keywords: allenes • asymmetric radical reactions • copper •
1,4-enynes • alkyl bromides
[11] a) X.-Y. Dong, Y.-F. Zhang, C.-L. Ma, Q.-S. Gu, F.-L. Wang, Z.-L. Li,
S.-P. Jiang, X.-Y. Liu, Nat. Chem. 2019, 11, 1158; b) Z.-H. Zhang, X.-Y.
4
This article is protected by copyright. All rights reserved.