3906 J ournal of Medicinal Chemistry, 1996, Vol. 39, No. 20
Hulin et al.
Hz, 1 H), 2.79 (dd, J ) 13.3 Hz, 9.3 Hz, 1 H), 3.31 (dd, J )
13.3 Hz, 3.1 Hz, 1 H), 3.63 (q, J ) 7.1 Hz, 1 H), 3.64 (q, J )
7.2 Hz, 1 H), 4.19-4.30 (m, 2 H), 4.63-4.67 (m, 3 H), 7.17-
7.34 (m, 5 H); 13C NMR (75 MHz, CDCl3) ∂ 15.1, 37.8, 54.8,
67.3, 67.3, 70.4, 127.4, 129.0, 129.4, 135.0, 153.4, 170.4; MS
(EI) m/e 263 (M+), 218, 134, 117, 91, 85, 65, 58; IR (KBr) ν
(cm-1) 1072, 1203, 1352, 1388, 1716, 1784 (s).
raphy (hexane/ethyl acetate/acetic acid, 10:10:1) and then
recrystallized from hexane/ethyl acetate and obtained as a
white solid (48 mg, 46%, mp 129-129.5 °C, [R]D ) -12.5° (c
0.99, CDCl3)): 1H NMR (300 MHz, CDCl3) ∂ 1.13 (t, J ) 7.1
Hz, 1 H), 2.33 (s, 3 H), 3.05 (dd, J ) 14.2 Hz, 7.6 Hz, 1 H),
3.18 (dd, J ) 14.2 Hz, 4.3 Hz, 1 H), 3.40 (m, 1 H), 3.54 (m, 1
H), 3.99 (s, 2 H), 4.07 (dd, J ) 7.6 Hz, 4.3 Hz, 1 H), 6.40 (d, J
) 1.3 Hz, 1 H), 7.07 (dd, J ) 8.4 Hz, 1.9 Hz, 1 H), 7.31 (d, J )
8.5 Hz, 1 H), 7.32 (s, 1 H), 7.39-7.43 (m, 3 H), 7.96-7.99 (m,
2 H); 13C NMR (75 MHz, CDCl3) ∂ 9.87, 20.52, 33.61, 48.72,
61.47, 74.97, 98.21, 105.38, 116.08, 119.89, 120.94, 122.17,
123.53, 123.74, 123.81, 124.90, 125.95, 126.45, 139.95, 148.81,
150.70, 154.55, 170.05; MS (CI, NH3) m/e 407, 406 (M+ + 1),
362, 195; IR (KBr) ν (cm-1) 709, 1110, 1124, 1197, 1723 (s).
Anal. (C24H23NO5) C, H, N.
4(S)-Ben zyl-3-{(2S,3R)-2-eth oxy-3-h ydr oxy-3-[2-[(5-m eth -
y l -2 -p h e n y l o x a z o l -4 -y l )m e t h y l ]b e n z o fu r a n -5 -y l ]-
p r op ion yl}oxa zolid in -2-on e (49). To a solution of (S)-4-
benzyl-3-(ethoxyacetyl)oxazolidin-2-one (48) (1.0 g, 3.8 mmol)
in dichloromethane (10 mL), cooled to 0 °C, was added freshly
distilled dibutylboron triflate (1.1 mL, 4.6 mmol) dropwise,
followed by triethylamine (0.69 mL, 4.9 mmol). After 5 min
the solution was cooled to -78 °C, and a precooled solution of
2-[(5-methyl-2-phenyloxazol-4-yl)methyl]-5-benzofurancarbox-
aldehyde (32) (1.33 g, 4.2 mmol) in dichloromethane (5 mL)
was added. After 20 min the mixture was warmed to 0 °C,
stirred at that temperature for 1 h, then quenched with a
solution of pH 7 buffer (10 mL) in methanol (30 mL), followed
by a solution of 30% hydrogen peroxide (10 mL) in methanol
(30 mL), and stirred at 0 °C for 1 h. The mixture was then
diluted with water and extracted with ethyl acetate (3). The
combined extracts were washed with brine, dried over sodium
sulfate, and concentrated. The product was purified by flash
chromatography (hexane/ethyl acetate, 1:1) and obtained as
a yellow solid (1.16 g, 53%, mp 66-70 °C, [R]D ) +70° (c 0.093,
CHCl3)): 1H NMR (300 MHz, CDCl3) ∂ 1.19 (t, J ) 7.0 Hz, 1
H), 2.32 (s, 3 H), 2.73 (dd, J ) 13.3 Hz, 9.6 Hz, 1 H), 3.22 (dd,
J ) 13.3 Hz, 3.2 Hz, 1 H), 3.46-3.70 (m, 3 H), 3.95 (dd, J )
9.1 Hz, 1.8 Hz, 1 H), 3.99 (s, 2 H), 4.37 (m, 1 H), 4.97 (d, J )
5.2 Hz, 1 H), 5.39 (d, J ) 5.2 Hz, 1 H), 6.46 (s, 1 H), 7.13 (dd,
J ) 6.0 Hz, 1.8 Hz, 2 H), 7.25-7.34 (m, 5 H), 7.36-7.43 (m, 3
H), 7.52 (s, 1 H), 7.93-7.98 (m, 2 H); 13C NMR (75 MHz, CDCl3)
∂ 10.2, 15.1, 25.9, 37.8, 55.8, 66.6, 66.9, 75.5, 81.7, 103.5, 110.5,
118.8, 122.3, 126.0, 127.4, 127.6, 128.7, 1128.9, 129.4, 129.9,
131.6, 133.3, 135.0, 145.0, 153.0, 154.7, 156.5, 159.6, 171.3;
MS (EI) m/e 263, 172, 117, 105, 92, 91, 86, 85, 83; IR (KBr) ν
(cm-1) 715, 1120, 1705, 1780 (s). Anal. (C34H32N2O7‚1/2H2O)
C, H, N.
Ack n ow led gm en t. We are deeply indebted to the
following for their expert assistance in providing the in
vivo biological data: K. A. Earle, R. K. McPherson, N.
A. Nardone, and A. J . Torchia.
Refer en ces
(1) (a) Rushforth, N. B.; Miller, N.; Bennett, P. H. Fasting and Two-
hour Post-Load Glucose Levels for the Diagnosis of Diabetes.
The Relationship between Glucose Levels and Complications of
Diabetes in the Pima Indians. Diabetologia 1979, 16, 373-379.
(b) Knuiman, M. W.; Welborn, T. A.; Mc Cann, V. J .; Stanton,
K. G.; Constable, I. J . Prevalence of Diabetic Complications in
Relation to Risk Factors. Diabetes 1986, 35, 1332-1339. (c)
Feldt-Rasmussen, B.; Mathiesen, E.; Deckert, T. Effect of Two
Years of Strict Metabolic Control on Progression of Incipient
Nephropathy in Insulin-Dependent Diabetes. Lancet 1986, No.
2, 1300-1304. (d) Dahl-J orgensen, K.; Brinchmann-Hansen, O.;
Hanssen, K. F.; Ganes, T.; Kierulf, P.; Smeland, E.; Sandvik,
L.; Aagenaes, O. Effect of Near-Normoglycemia for Two Years
on Progression of Early Diabetic Retinopathy, Nephropathy, and
Neuropathy: the Oslo Study. Br. Med. J . 1986, 293, 1195-1199.
(e) Pirart, J . Diabetes Mellitus and its Degenerative Complica-
tions. A Prospective Study of 4,400 Patients Observed between
1947 and 1973. Diabetes Care 1978, 1, 168-188. (f) Pirart, J .
Diabetes Mellitus and its Degenerative Complications. A Pro-
spective Study of 4,400 Patients Observed between 1947 and
1973. Diabetes Care 1978, 1, 252-263.
4(S)-Ben zyl-3-{2(R)-eth oxy-3-[2-[(5-m eth yl-2-p h en ylox-
a zol-4-yl)m eth yl]ben zofu r a n -5-yl]p r op ion yl}oxa zolid in -
2-on e (50). To a solution of 4(S)-benzyl-3-{(2S,3R)-2-ethoxy-
3-h ydr oxy-3-[2-[(5-m et h yl-2-ph en yloxa zol-4-yl)m et h yl]-
benzofuran-5-yl]propionyl}oxazolidin-2-one (49) (1.0 g, 1.72
mmol) in trifluoroacetic acid (20 mL) was added triethylsilane
(3.0 mL, 19 mmol). The solution was stirred for 4 days at room
temperature, then diluted with ethyl acetate, washed with
water and saturated sodium bicarbonate solution (3×), dried
over sodium sulfate, and concentrated. The product was
isolated by flash chromatography (hexane/ethyl acetate, 5:1)
(2) Williams, G. Management of Non-Insulin-Dependent Diabetes
Mellitus. Lancet 1994, 95-100.
(3) (a) The Diabetes Control and Complications Trial Research
Group. The Effect of Intensive treatment on the Development
and Progression of Long-Term Complications in Insulin-Depend-
ent Diabetes Mellitus. N. Engl. J . Med. 1993, 329, 977-986. (b)
Eastman, R. C.; Siebert, C. W.; Harris, M.; Gorden, P. Implica-
tions of the Diabetes Control and Complications Trial. J . Clin.
Endoc. Metab. 1993, 77, 1105-1107. (c) American Diabetes
Association. Implications of the Diabetes Control and Complica-
tions Trial. Diabetes 1993, 42, 1555-1558.
(4) (a) Steiner, K. E.; Lien, E. L. Hypoglycaemic Agents Which Do
Not Release Insulin. Progr. Med. Chem. 1987, 24, 209-248. (b)
New Antidiabetic Drugs; Bailey, C. J ., Flatt, P. R., Eds.; Smith,
Gordon & Co.: London, 1990. (c) Hulin, B. New Hypoglycaemic
Agents. Progr. Med. Chem. 1994, 31, 1-58.
as a pale yellow solid (0.44 g, 45%, mp 116-117 °C, [R]D
)
+53.8° (c 0.12, CHCl3)): 1H NMR (300 MHz, CDCl3) ∂ 1.14 (t,
J ) 6.9 Hz, 1 H), 2.32 (s, 3 H), 2.78 (dd, J ) 13.3 Hz, 9.4 Hz,
1 H), 3.02-3.05 (m, 2 H), 3.23 (dd, J ) 13.5 Hz, 3.3 Hz, 1 H),
3.37 (m, 1 H), 3.55 (m, 1 H), 3.88 (t, J ) 8.4 Hz, 1 H), 3.98 (s,
2 H), 4.06 (dd, J ) 8.7 Hz, 2.4 Hz, 1 H), 4.48 (m, 1 H), 5.29
(dd, J ) 7.5 Hz, 5.6 Hz, 1 H), 6.41 (s, 1 H), 7.13-7.18 (m, 4
H), 7.26-7.32 (m, 4 H), 7.38-7.42 (m, 3 H), 7.95-7.98 (m, 2
H); 13C NMR (75 MHz, CDCl3) ∂ 10.3, 15.2, 26.0, 37.8, 39.5,
55.5, 66.3, 66.5, 79.0, 103.3, 110.4, 121.4, 125.2, 126.0, 127.4,
127.6, 128.7, 128.8, 128.9, 129.4, 129.9, 131.1, 131.8, 135.1,
145.0, 153.1, 154.0, 156.0, 159.6, 173.1; MS (EI) m/e 564 (M+),
518, 360, 342, 302, 172, 166; IR (KBr) ν (cm-1) 700, 710, 720,
750, 780, 810, 1125, 1200, 1240, 1260, 1295, 1355, 1380, 1480,
1705, 1790. Anal. (C34H32N2O6) C, H, N.
(5) Hulin, B.; McCarthy, P. A.; Gibbs, E. M. The Glitazone Family
of Antidiabetic Agents. Curr. Pharm. Des. 1996, 2, 85-102.
(6) (a) Sohda, T.; Mizuno, K.; Imamiya, E.; Sugiyama, Y; Fujita, T.;
Kawamatsu, Y. Studies on Antidiabetic Agents. II. Synthesis of
5-[4-(1-Methylcyclohexylmethoxy)benzyl]thiazolidine-2,4-dione
(ADD-3878) and Its Derivatives. Chem. Pharm. Bull. 1982, 30,
3580-3600. (b) Fujita, T.; Sugiyama, Y.; Taketomi, S.; Sohda,
T.; Kawamatsu, Y.; Iwatsuka, H.; Suzuoki, Z. Reduction of
Insulin Resistance in Obese and Diabetic Animals by 5-[4-(1-
Methylcyclohexylmethoxy)benzyl]thiazolidine-2,4-dione (ADD-
3878, U-63,287, Ciglitazone), a New Antidiabetic Agent. Diabetes
1983, 32, 804-810. (c) Chang, A. Y.; Wyse, B. M.; Gilchrist, B.
J .; Peterson, T.; Diani, A. R. Ciglitazone, A New Hypoglycemic
Agent. I. Studies in ob/ob and db/db Mice, Diabetic Chinese
Hamsters, and Normal and Streptozotocin-Diabetic Rats. Dia-
betes 1983, 32, 830-838.
(7) Recent references on thiazolidinediones: (a) Cawthorne, M. A.;
Lister, C. A.; Holder, J . C.; Kirkham, D. M.; Young, P. W.;
Cantello, B. C.; Hindley, R. M.; Smith, S. A. Anti-hyperglycaemic
Efficacy of BRL 49653, a highly potent Thiazolidinedione, in
Animal Models of Non-insulin Dependent Diabetes. Diabetes
1993, 42 (Suppl. 1), 204A. (b) Yen, T.; Bue-Valleskey, J .;
Burkhart, D.; Dininger, N.; Gill, A.; Gold, G.; J ohnson, T.; Myers,
S.; Shaw, W.; Short, W.; Tinsley, F.; Williams, G.; Williams, V.;
Yakubu-Madus, F. The Efficacy and Adverse Effects of a Potent
Insulin Sensitivity Enhancer: LY282449 (Tanabe-174). Diabe-
tologia 1993, 36 (Suppl. 1), A182. (c) Cantello, B. C. C.;
(S)-2-Eth oxy-3-[2-[(5-m eth yl-2-p h en yloxa zol-4-yl)m eth -
yl]ben zofu r a n -5-yl]p r op ion ic Acid ((-)-18). 4(S)-Benzyl-
3-{2(R)-ethoxy-3-[2-[(5-methyl-2-phenyloxazol-4-yl)methyl]ben-
zofuran-5-yl]propionyl}oxazolidin-2-one (50) (0.15 g, 0.26 mmol)
was dissolved in THF (5 mL). The solution was cooled to 0
°C, and 0.5 N lithium hydroxide (1.1 mL, 0.52 mmol) was
added. After 15 min the bulk of the THF was removed, and
the residue was acidified with 1 N HCl, diluted with water,
and extracted with ethyl acetate (3×). The combined extracts
were washed with brine, dried over sodium sulfate, and
concentrated. The product was purified by flash chromatog-