10.1002/chem.201803921
Chemistry - A European Journal
1995, 95, 1409-1430; d) D. B. Cordes, P. D. Lickiss, F. Rataboul, Chem. Rev. 2010, 110, 2081-2173; e) A. M.
Muzafarov, Silicon polymers, Vol. 235, Springer Science & Business Media, 2010.
[5]
a) M. C. Lipke, A. L. Liberman-Martin, T. D. Tilley, Angew. Chem. Int. Ed. 2017, 56, 2260-2294; b) M. Oestreich,
J. Hermeke, J. Mohr, Chem. Soc. Rev. 2015, 44, 2202-2220; c) Y. Nakajima, S. Shimada, RCS Adv. 2015, 5,
20603-20616; d) S. Díez-González, S. P. Nolan, Acc. Chem. Res. 2008, 41, 349-358; e) B. Marciniec, Coord.
Chem. Rev. 2005, 249, 2374-2390; f) S. Kyushin, in Efficient Methods for Preparing Silicon Compounds (Ed.: H.
W. Roesky), Academic Press, 2016, pp. 455-498.
[6]
[7]
a) Y. Nagai, Org. Prep. Proced. Int. 1980, 12, 13-48; b) R. J. Rahaim, R. E. Maleczka, Org. Lett. 2005, 7, 5087-
5090; c) J. Pesti, G. L. Larson, Org. Process Res. Dev. 2016, 20, 1164-1181; d) S. Fountoulaki, V. Daikopoulou,
P. L. Gkizis, I. Tamiolakis, G. S. Armatas, I. N. Lykakis, ACS Catal. 2014, 4, 3504-3511.
a) T. Shimoda, Y. Matsuki, M. Furusawa, T. Aoki, I. Yudasaka, H. Tanaka, H. Iwasawa, D. Wang, M. Miyasaka,
Y. Takeuchi, Nature 2006, 440, 783-786; b) M. Haas, V. Christopoulos, J. Radebner, M. Holthausen, T. Lainer,
L. Schuh, H. Fitzek, G. Kothleitner, A. Torvisco, R. Fischer, O. Wunnicke, H. Stueger, Angew. Chem. 2017, 129,
14259-14262; c) S. H. Zaferani, Renewable Sustainable Energy Rev. 2017, 71, 359-364; d) R. Yoneyama, T.
Sato, K. Imato, T. Kosuge, T. Ohishi, Y. Higaki, A. Takahara, H. Otsuka, Chem. Lett. 2016, 45, 36-38; e) S.
Guruvenket, J. M. Hoey, K. J. Anderson, M. T. Frohlich, R. A. Sailer, P. Boudjouk, Thin Solid Films 2015, 589,
465-471.
[8]
a) F. Whitmore, E. Pietrusza, L. Sommer, J. Am. Chem. Soc. 1947, 69, 2108-2110; b) J. Zech, H. Schmidbaur,
Chem. Ber. 1990, 123, 2087-2091; c) R. Savela, W. Zawartka, R. Leino, Organometallics 2012, 31, 3199-3206;
d) S. Mawaziny, J. Chem. Soc. 1970, 1641-1642; e) A. Kunai, T. Kawakami, E. Toyoda, M. Ishikawa,
Organometallics 1992, 11, 2708-2711; f) A. Kunai, T. Sakurai, E. Toyoda, M. Ishikawa, Organometallics 1996,
15, 2478-2482; g) M. Ishikawa, E. Toyoda, M. Ishii, A. Kunai, Y. Yamamoto, M. Yamamoto, Organometallics
1994, 13, 808-812; h) W. Wang, Y. Tan, Z. Xie, Z. Zhang, J. Organomet. Chem. 2014, 769, 29-33; i) A. Kunai,
J. Ohshita, J. Organomet. Chem. 2003, 686, 3-15; j) L. D. Balashova, A. B. Bruker, L. Z. Soborovskiim, Zh.
Obshch. Khim. 1962, 32, 2982-2983; k) K. M. Lewis, R. A. Cameron, J. M. Larnerd, B. Kanner, US4973725,
1990.
[9]
Accessible from tetraalkylammonium salt catalyzed redistribution reactions of MeSiHCl2: K. Moedtritzer, J. R.
van Wazer, J. Organomet. Chem. 1968, 12, 69–77.
[10] a) E. G. Rochow, J. Am. Chem. Soc. 1945, 67, 963-965; b) D. Seyferth, Organometallics 2001, 20, 4978-4992;
c) B. R. Yoo, I. N. Jung, Adv. Organomet. Chem. 2004, 50, 145-177; d) E. G. Rochow, E. G. Rochow, An
Introduction to the Chemistry of the Silicones, Vol. 12, Wiley New York, 1951; e) L. Rösch, P. John, R.
Reitmeier, in Ullmann's Encyclopedia of Industrial Chemistry, 2000.
[11] a) M. J. Owen, in Silicon-Based Polymer Science, Vol. 224, Am. Chem. Soc., 1989, pp. 705-739; b) C. Rücker,
K. Kümmerer, Chem. Rev. 2015, 115, 466-524.
[12] a) M. Ishikawa, H. Sakamoto, T. Tabuchi, Organometallics 1991, 10, 3173-3176; b) T. Kusukawa, Y. Kabe, B.
Nestler, W. Ando, Organometallics 1995, 14, 2556-2564; c) A. Naka, Y. Matsumoto, T. Itano, K. Hasegawa, T.
Shimamura, J. Ohshita, A. Kunai, T. Takeuchi, M. Ishikawa, J. Organomet. Chem. 2009, 694, 346-352; d) V.
Pongkittiphan, E. A. Theodorakis, W. Chavasiri, Tetrahedron Lett. 2009, 50, 5080-5082; e) L. H. Sommer, J. D.
Citron, J. Org. Chem. 1967, 32, 2470-2472; f) J. W. Jenkins, H. W. Post, J. Org. Chem. 1950, 15, 556-559; g) L.
Sommer, C. Frye, G. Parker, K. Michael, J. Am. Chem. Soc. 1964, 86, 3271-3276; h) S. Varaprath, D. H. Stutts,
J. Organomet. Chem. 2007, 692, 1892-1897; i) R. F. Cunico, E. M. Dexheimer, Syn. React. Inorg. Metal-Org.
Chem. 1974, 4, 23-26; j) J. Curtice, H. Gilman, G. S. Hammond, J. Am. Chem. Soc. 1957, 79, 4754-4759; k) H.
Sakurai, M. Murakami, M. Kumada, J. Am. Chem. Soc. 1969, 91, 519-520; l) Y. Nagai, K. Yamazaki, I.
Shiojima, N. Kobori, M. Hayashi, J. Organomet. Chem. 1967, 9, 21-24.
[13] K. Chulsky, R. Dobrovetsky, Angew. Chem. Int. Ed. 2017, 56, 4744-4748.
[14] See Supporting Information for further details.
[15] Geometry optimizations were performed at the SMD-M06-2X-D3/6-31+G(d,p) level of theory. Me2O was used
as molecular model throughout; essentially identical results were obtained with Et2O and 1,4-dioxane. See
Section D1 in the Supporting Information for full computational details and benchmark data to validate the use
of the DFT method chosen.
[16] a) P. Jutzi, C. Muller, A. Stammler, H. G. Stammler, Organometallics 2000, 19, 1442-1444; b) M. Brookhart, B.
Grant, A. F. Volpe, Organometallics 1992, 11, 3920-3922.
[17] a) L. D. Henderson, W. E. Piers, G. J. Irvine, R. McDonald, Organometallics 2002, 21, 340-345; b) S. Kliem, U.
Klingebiel, M. Noltemeyer, Z. Anorg. Allg. Chem. 2005, 631, 99-104.
[18] C. A. Reed, Acc. Chem. Res. 2013, 46, 2567-2575.
8
This article is protected by copyright. All rights reserved.