Baeyer-Villiger Monooxygenases
A R T I C L E S
Scheme 1. Simplified Mechanism of BVMOs4,6
Inspite of the past successes,1c,4 the instability of BVMOs
constitutes a point of concern.10 When using the isolated
enzymes in conjunction with an enzymatic NADPH regeneration
system (or isolated fusion proteins) in place of whole cells, this
factor needs to be considered. Greater robustness would also
be advantageous when employing whole cells, either as such
or in immobilized form, because this would impart greater
robustness to the system under operating conditions. For these
reasons, the discovery by Fraaije, Janssen, et al. of a thermo-
stable BVMO, namely phenylacetone monooxygenase (PAMO),
was a major step forward.11 Moreover, the X-ray structure
analysis of PAMO (in the absence of NADP+), reported in 2004
by Malito, Mattevi, and co-workers,12 provided for the first time
a means to consider the mechanism of BVMOs in greater detail
than in the past.4 In particular, it was suggested that Arg337
stabilizes the Criegee intermediate by H-bonding,12 which helps
considerably when unravelling the details of the mechanism.
Indeed, we utilized this information in discussing the stereo-
chemical outcome of previous BVMO catalyzed reactions such
as those reported for CHMO and mutants thereof generated by
directed evolution,13 yet a detailed interpretation was not
possible. Most recently, Lau, Berghuis, and co-workers reported
the X-ray structure of a CHMO from an environmental
Rhodococcus strain not only bound with FAD but also with
NADP+,14 showing an open and a closed form in the absence
of a substrate or inhibitor. This is highly revealing, but a precise
interpretation of the stereochemical outcome of CHMO cata-
lyzed reactions remains a challenge, which may have to do with
the complex domain movements and the “sliding” cofactor.
Unfortunately, the substrate scope of the robust wild-type
(WT) PAMO is very narrow, reasonable activity being observed
essentially only with phenylacetone or similar linear phenyl-
substituted ketones.11 In previous protein engineering studies
of PAMO, we utilized rationally designed amino acid deletions15
and saturation mutagenesis using the Combinatorial Active-Site
Saturation Test (CAST)16 at loop positions 441-444 next to
the putative binding pocket (Figure 1), drastically reduced amino
acid alphabets being used on the basis of sequence alignment
of eight BVMOs.17 These positions, being part of a longer loop,
constitute a “bulge” in PAMO, absent in CHMO, and were
therefore considered to be promising sites for protein engineer-
ing. However, strategies utilizing deletions or randomization at
positions 441-444 expanded the substrate scope only minimally.
The basic result was the evolution of mutants that catalyze the
oxidative kinetic resolution of 2-phenylcyclohexanone with
(6) Isolation, characterization and/or mechanistic studies of CHMOs and
other BVMOs:(a) Turfitt, G. E. Biochem. J. 1948, 42, 376–383. (b)
Donoghue, N. A.; Norris, D. B.; Trudgill, P. W. Eur. J. Biochem.
1976, 63, 175–192. (c) Schwab, J. M.; Li, W. B.; Thomas, L. P. J. Am.
Chem. Soc. 1983, 105, 4800–4808. (d) Walsh, C. T.; Chen, Y.-C. J.
Angew. Chem. 1988, 100, 342–352. Angew. Chem., Int. Ed. Engl. 1988,
27, 333-343. (e) Brzostowicz, P. C.; Walters, D. M.; Thomas, S. M.;
Nagarajan, V.; Rouvie`re, P. E. Appl. EnViron. Microbiol. 2003, 69,
334–342. (f) Sheng, D.; Ballou, D. P.; Massey, V. Biochemistry 2001,
40, 11156–11167.
(7) (a) Zhao, H.; van der Donk, W. A. Curr. Opin. Biotechnol. 2003, 14,
583–589. (b) van der Donk, W. A.; Zhao, H. Curr. Opin. Biotechnol.
2003, 14, 421–426. (c) de Gonzalo, G.; Ottolina, G.; Carrea, G.;
Fraaije, M. W. Chem. Commun. (Cambridge, U. K.) 2005, 3724–3726.
(d) Hollmann, F.; Taglieber, A.; Schulz, F.; Reetz, M. T. Angew. Chem.
2007, 119, 2961–2964. Angew. Chem., Int. Ed. 2007, 46, 2903-2906.
(e) Hollmann, F.; Hofstetter, K.; Schmid, A. Trends Biotechnol. 2006,
24, 163–171. (f) Urlacher, V. B.; Schmid, R. D. Curr. Opin. Chem.
Biol. 2006, 10, 156–161. (g) Zambianchi, F.; Pasta, P.; Carrea, G.;
Colonna, S.; Gaggero, N.; Woodley, J. M. Biotechnol. Bioeng. 2002,
78, 489–496. (h) Lee, W.-H.; Park, J.-B.; Park, K.; Kim, M.-D.; Seo,
J.-H. Appl. Microbiol. Biotechnol. 2007, 76, 329–338. (i) Woodyer,
R.; van der Donk, W. A.; Zhao, H. Biochemistry 2003, 42, 11604–
11614.
(13) (a) Reetz, M. T.; Brunner, B.; Schneider, T.; Schulz, F.; Clouthier,
C. M.; Kayser, M. M. Angew. Chem. 2004, 116, 4167–4170. Angew.
Chem., Int. Ed. 2004, 43, 4075-4078. See also directed evolution for
increasing the enantioselectivity of the BVMO from Pseudomonas
fluorescens: (b) Kirschner, A.; Bornscheuer, U. T. Appl. Microbiol.
Biotechnol. 2008, 81, 465–472.
(8) Torres Pazmin˜o, D. E.; Snajdrova, R.; Baas, B.-J.; Ghobrial, M.;
Mihovilovic, M. D.; Fraaije, M. W. Angew. Chem. 2009, 120, 2307–
2310. Angew. Chem., Int. Ed. 2008, 47, 2275-2278.
(9) (a) Hilker, I.; Wohlgemuth, R.; Alphand, V.; Furstoss, R. Biotechnol.,
Bioeng. 2005, 92, 702–710. (b) Baldwin, C. V. F.; Wohlgemuth, R.;
Woodley, J. M. Org. Process Res. DeV. 2008, 12, 660–665.
(10) Walton, A. Z.; Stewart, J. D. Biotechnol. Prog. 2004, 20, 403–411.
(11) (a) Fraaije, M. W.; Wu, J.; Heuts, D. P. H. M.; van Hellemond, E. W.;
Spelberg, J. H. L.; Janssen, D. B. Appl. Microbiol. Biotechnol. 2005,
66, 393–400. (b) Zambianchi, F.; Fraaije, M. W.; Carrea, G.; de
Gonzalo, G.; Rodr´ıguez, C.; Gotor, V.; Ottolina, G. AdV. Synth. Catal.
2007, 349, 1327–1331. (c) Rodr´ıgues, C.; de Gonzalo, G.; Torres
Pazmin˜o, D. E.; Fraaije, M. W.; Gotor, V. Tetrahedron: Asymmetry
2008, 19, 197–203.
(14) Mirza, I. A.; Yachnin, B. J.; Wang, S.; Grosse, S.; Bergeron, H.; Imura,
A.; Iwaki, H.; Hasegawa, Y.; Lau, P. C. K.; Berghuis, A. M. J. Am.
Chem. Soc. 2009, 131, 8848–8854.
(15) (a) Bocola, M.; Schulz, F.; Leca, F.; Vogel, A.; Fraaije, M. W.; Reetz,
M. T. AdV. Synth. Catal. 2005, 347, 979–986. (b) Schulz, F.; Leca,
F.; Hollmann, F.; Reetz, M. T. Beilstein J. Org. Chem. 2005, 1, 10.
(16) (a) Reetz, M. T.; Bocola, M.; Carballeira, J. D.; Zha, D.; Vogel, A.
Angew. Chem. 2005, 117, 4264–4268. Angew. Chem., Int. Ed. 2005,
44, 4192-4196. (b) Reetz, M. T.; Kahakeaw, D.; Sanchis, J. Mol.
BioSyst. 2009, 5, 115–122.
(12) Malito, E.; Alfieri, A.; Fraaije, M. W.; Mattevi, A. Proc. Natl. Acad.
Sci. U.S.A. 2004, 101, 13157–13162.
(17) Reetz, M. T.; Wu, S. Chem. Commun. (Cambridge, U. K.) 2008, 5499–
5501.
9
J. AM. CHEM. SOC. VOL. 131, NO. 42, 2009 15425