A. Agarwal et al. / Bioorg. Med. Chem. Lett. 15 (2005) 3133–3136
3135
R. W.; Schmatz, D. M.; Wyvratt, M. J.; Fisher, M. H.
Tetrahedron Lett. 2000, 41, 7831; (c) Colletti, S. L.; Myers,
R. W.; Darkin-Rattray, S. J.; Gurnett, A. M.; Dulski, P.
M.; Galuska, S.; Allocco, J. J.; Ayer, M. B.; Li, C. Bioorg.
Med. Chem. Lett. 2001, 11, 113; (d) Colletti, S. L.; Li, C.;
Fisher, M. H.; Wyvratt, M. J.; Meinke, P. T. Tetrahedron
Lett. 2000, 41, 7825.
have shown MIC of 10 lg/mL. All the compounds,
which had N-methyl piperazine group at 2-position of
the pyrimidine ring showed a MIC of 1 lg/mL. Varying
the substituents on the phenyl ring at the sixth position
of the pyrimidine ring have no effect on the activity,
while substitution at the second position plays a crucial
role in exerting antimalarial activity. On replacing the
piperazine ring with pyrrolidine and piperidine moiety
the activity dropped to 10 lg/mL. On further substitu-
ting it with morpholine moiety the activity reduced fur-
ther having a MIC of 50 lg/mL. These results emphasize
the better efficacy of N-methyl piperazine group over
pyrrolidine, piperidine and morpholine group in antima-
larial activity.
6. (a) Brinner, K. M.; Powles, M. A.; Schmatz, D. M.;
Ellman, J. A. Bioorg. Med. Chem. Lett. 2005, 15, 345; (b)
Stocks, P. A.; Raynes, K. J.; Bray, P. G.; Park, B. K.;
Neill, P. M.; Ward, S. A. J. Med. Chem. 2002, 45, 4975; (c)
Ryckebusch, A.; Deprez-Poulain, R. B.; Debreu-Fontaine,
M. A.; Vandaele, R.; Mouray, E.; Grellierb, P.; Sergher-
aerta, C. Bioorg. Med. Chem. Lett. 2003, 13, 3783; (d)
Delarue, S.; Girault, S.; Maes, L., et al. J. Med. Chem.
2001, 44, 2827; (e) Batra, S.; Srivastava, P. J. Med. Chem.
2000, 43, 3428.
7. (a) Srivastava, S. K.; Chauhan, P. M. S.; Agarwal, S. K.;
Bhaduri, A. P.; Singh, S. N.; Fatima, N.; Chatterjee, R.
K.; Bose, C. Bioorg. Med. Chem. Lett. 1996, 6, 2623; (b)
Srivastava, S. K.; Agarwal, A.; Chauhan, P. M. S.;
Agarwal, S. K.; Bhaduri, A. P.; Singh, S. N.; Fatima, N.;
Chatterjee, R. K. J. Med. Chem. 1999, 42, 1667; (c)
Srivastava, S. K.; Agarwal, A.; Chauhan, P. M. S.;
Agarwal, S. K.; Bhaduri, A. P.; Singh, S. N.; Fatima, N.;
Chatterjee, R. K. Bioorg. Med. Chem. 1999, 7, 1223; (d)
Srivastava, S. K.; Chauhan, P. M. S.; Bhaduri, A. P.;
Fatima, N.; Chatterjee, R. K. J. Med. Chem. 2000, 43,
2275; (e) Tiwari, S.; Chauhan, P. M. S.; Bhaduri, A. P.;
Fatima, N.; Chatterjee, R. K. Bioorg. Med. Chem. Lett.
2000, 10, 1409.
5. Conclusion
Twenty-four substituted indole 2–5(a–f) derivatives were
synthesized as pyrimethamine analogues. Out of the
synthesized compounds six compounds showed MIC
of 1 lg/mL. These compounds are 10 times more potent
than pyrimethamine. The present study suggested that
the newly synthesized indole derivatives are new lead
in antimalarial chemotherapy. These molecules can be
very useful for further optimization work in malarial
chemotherapy.
8. (a) Agarwal, A.; Srivastava, K.; Puri, S. K.; Chauhan, P.
M. S. Bioorg. Med. Chem. Lett. 2005, 15, 531; (b)
Agarwal, A.; Srivastava, K.; Puri, S. K.; Chauhan, P.
M. S. Bioorg. Med. Chem. Lett. 2005, 15, 1881–1883; (c)
Shrivastava, S.; Tiwari, S.; Chauhan, P. M. S.; Puri, S. K.;
Bhaduri, A. P.; Pandey, V. C. Bioorg. Med. Chem. Lett.
1999, 9, 653; (d) Shrivastava, S.; Tiwari, S.; Shrivastava, S.
K.; Chauhan, P. M. S.; Bhaduri, A. P.; Pandey, V. C.
Bioorg. Med. Chem. Lett 1997, 7, 2741.
Acknowledgements
A.A. thanks the Council of Scientific and Industrial Re-
search (India) for the award of Senior Research Fellow-
ship. We are also thankful to SAIF Division, CDRI,
Lucknow for providing spectroscopic data. CDRI com-
munication no. 6737.
9. Manna, F.; Chimenti, F.; Bolasco, A.; Bizzarri, B.;
Filippelli, W.; Filippelli, A.; Gagliardi, L. Eur. J. Med.
Chem. 1999, 34, 245.
References and notes
10. Andrews, K. J. M.; Anand, N.; Todd, A. R.; Topham, A.
J. Chem. Soc. 1949, 2490.
11. Rieckmann, K. H.; Sax, L. J.; Campbell, G. H.; Mrema
Lancet 1978, 1, 22.
12. Trager, W.; Jensen, J. B. Science 1979, 193, 673.
13. Lambros, C.; Vanderberg, J. P. J. Parasitol. 1979, 65, 418.
14. Spectroscopic data for 2c. MS: 400 (M+1); mp 130–
1. (a) Gardner, M. J.; Shallom, S. J.; Carlton, J. M.;
Salzberg, S. L.; Nene, V.; Shoaibi, A., et al. Nature
2000, 419, 531–534; (b) Ursos, L. M. B.; Roepe, P. D.
Med. Res. Rev. 2002, 22, 465–491.
2. (a) National Institute of Allergy and Infectious Diseases
(NIAID). Global Health Research Plan for HIV/AIDS,
Malaria and Tuberculosis; World Health Organization:
Geneva, 2001, p 18; (b) Kumar, A.; Katiyar, S. B.; Agarwal,
A.; Chauhan, P. M. S. Curr. Med. Chem. 2003, 10, 1137; (c)
Shrivastava, S. K.; Chauhan, P. M. S. Curr. Med. Chem.
2001, 8, 1535; (d) Kumar, A.; Katiyar, S. B.; Agarwal, A.;
Chauhan, P. M. S. Drugs Future 2003, 28, 243.
3. (a) Butcher, G. A.; Sinden, R. E.; Curtis, C. Parasitol.
Today 2000, 16, 43; (b) Adams, J. H.; Wu, Y.; Fairfield, A.
Parasitol. Today 2000, 16, 89; (c) Murray, M. C.; Perkins,
M. E. Ann. Rep. Med. Chem. 1996, 31, 141.
4. (a) Enserink, M. Science 2000, 287, 1956; (b) Vilaivan, V.;
Saesaengseerung, N.; Jarprung, D.; Kamchonwongpaisan,
S.; Sirawarapornc, W.; Yuthavong, Y. Bioorg. Med. Chem.
2003, 11, 217; (c) Rastelli, G.; Sirawaraporm, W.; Som-
pornpisut, P., et al. Bioorg. Med. Chem. 2000, 8, 1117.
5. (a) Singh, S. B.; Zink, D. L.; Polishook, J. D.; Dombrow-
ski, A. W.; Darkin-Rattray, S. J.; Schmatz, D. M.; Goetz,
M. A. Tetrahedron Lett. 1996, 37, 8077; (b) Meinke, P. T.;
Colletti, S. L.; Ayer, M. B.; Darkin-Rattray, S. J.; Myers,
132 °C; IR (KBr) 2932, 1645, 1574, 1484, 1319, 1280 cmÀ1
;
1H NMR (CDCl3, 200 MHz): d (ppm) 8.70 (s, 1H, NH),
8.43 (d, 1H, J = 8.6 Hz), 8.09 (d, 2H, J = 8.8 Hz), 7.90 (s,
1H), 7.42 (d, 1H, J = 8.2 Hz), 7.29–7.26 (m, 2H), 7.27 (s,
1H), 7.01 (d, 2H, J = 8.8 Hz), 4.08 (t, 4H, J = 4.9 Hz), 2.58
(t, 4H, J = 4.9 Hz), 2.38 (s, 3H, NMe); 13C (CDCl3,
50 MHz): d 168.3, 167.5, 166.5, 166.2, 142.6, 135.9, 133.5,
132.4, 130.7, 127.4, 126.7, 125.9, 120.5, 119.1, 117.2, 106.2,
55.8, 55.5, 46.7, 44.2. Anal. Calcd for C24H25N5O: Calcd
C, 72.16; H, 6.31; N, 17.53. Found: C, 72.52; H, 6.54; N,
17.71. Spectroscopic data for 2f. MS : 404 (M+1); mp 204–
206 °C; IR (KBr) 2956, 1654, 1568, 1478, 1325, 1275 cmÀ1
;
1H NMR (CDCl3, 200 MHz): d (ppm) 8.83 (s, 1H, NH),
8.42 (d, 1H, J = 8.1 Hz), 8.05 (d, 2H, J = 8.5 Hz), 7.90 (s,
1H), 7.48 (d, 2H, J = 8.5 Hz), 7.41 (d, 1H, J = 8.3 Hz),
7.30 (s, 1H), 7.28–7.25 (m, 2H), 4.10 (t, 4H, J = 5.4 Hz),
2.57 (t, 4H, J = 5.4 Hz), 2.38 (s, 3H); 13C (CDCl3,
50 MHz): 165.8, 163.6, 162.5, 162.3, 137.8, 135.9, 128.8,
128.7, 127.5, 125.9, 122.6, 122.0, 121.2, 115.9, 112.3, 104.5,