10.1002/ejoc.202000837
European Journal of Organic Chemistry
(ca. 1:1, could be separated, 27 mg in total, 0.078 mmol, total yield 44%)
and then the main product alcohol 24 as a colorless oil (36 mg, 0.104 mmol,
58%).
Data for (2R,4S)-1 (a colorless oil, 14 mg, 0.054 mmol, normal phase
25
chromatography using 1:1 PE/EtOAc, 65% from 26): [α]D = –8.7 (c =
0.22, MeOH). 1H NMR (500 MHz, CD3OD) δ 7.77 (d, J = 8.8 Hz, 2H, H),
6.97 (dd, J = 15.3, 0.9 Hz, 1H), 6.74 (dd, J = 15.3, 8.4, Hz, 1H), 6.62 (d, J =
8.8 Hz, 2H), 2.48 (hept, J = 7.1 Hz, 1H), 2.42 (sext, J =7.1 Hz, 1H), 1.81
(dt, J = 13.7, 7.8 Hz, 1H), 1.42 (dt, J = 13.6, 6.7 Hz, 1H), 1.14 (d, J = 7.0
Hz, 3H), 1.10 (d, J = 6.7 Hz, 3H) ppm; 13C NMR (125 MHz, CD3OD) δ
190.60, 180.55, 155.66, 153.03, 132.66, 127.18, 125.68, 114.50, 41.36,
38.89, 36.56, 20.49, 17.94 ppm; FT-IR (film of a concd solution in CH2Cl2)
ν = 3467, 3358, 3231, 2968, 2931, 1706, 1589, 1558, 1361, 1286, 1176,
1132, 982, 833 cm–1; ESI-MS m/z 284.4 ([M + Na]+); ESI-HRMS calcd for
C15H19O3NNa ([M + Na]+): 284.1257, found 284.1263.
25
Data for 24: [α]D = +22.9 (c = 1.00, CH2Cl2) 1H NMR (500 MHz, CDCl3)
δ 7.91 (d, J = 8.8 Hz, 2H), 7.47 (d, J = 8.7 Hz, 2H), 6.91-6.83 (m, 2H), 6.90
(s, 1H), 3.47 (dd, J = 10.5, 5.9 Hz, 1H), 3.43 (dd, J = 10.5, 6.3 Hz, 1H),
2.60-2.51 (m, 1H), 1.69-1.60 (m, 1H), 1.60-1.54 (m, 1H), 1.53 (s, 9H),
1.24-1.17 (m, 1H), 1.13 (d, J = 6.7 Hz, 3H), 0.94 (d, J = 6.7 Hz, 3H) ppm;
13C NMR (125 MHz, CDCl3) δ 189.56, 154.18, 152.38, 142.86, 132.45,
130.20, 124.23, 117.61, 81.34, 68.49, 40.02, 34.89, 33.72, 28.40, 20.90,
16.53 ppm; FT-IR (film of a concd solution in CH2Cl2) ν = 3439, 3307,
2963, 2927, 1731, 1660, 1594, 1530, 1411, 1367, 1314, 1235, 1151054,
985, 838, 777 cm–1; ESI-MS m/z 348.2 ([M + H]+); ESI-HRMS calcd for
C20H30O4N ([M + H]+): 348.2169, found 348.2171.
The above sample obtained using normal phase chromatography was then
subjected to reverse phase chromatography (eluting with 1:1 H2O/MeOH)
on C-18 silica gel and the following set of data for (2R,4S)-1 (isolated using
Data for side product 25a (recored on a pure analytical sample obtained by
25
25
further chromatoragphy, less polar than 25b): [α]D = +8.5 (c = 1.00,
reverse phase chromatography) were collected: [α]D = –8.6 (c = 0.22,
CHCl3). 1H NMR (500 MHz, CDCl3) δ 7.93 (d, J = 8.7 Hz, 2H), 7.43 (d, J
= 8.8 Hz, 2H), 6.75 (s, 1H, NH), 3.77 (ddd, J = 11.2, 4.4, 2.3 Hz, 1H, H-1),
3.54 (ddd, J = 9.8, 8.4, 3.2 Hz, 1H, H-5), 3.11 (dd, J = 15.5, 8.4 Hz, 1H, H-
6), 3.01 (dd, J = 15.5, 3.3 Hz, 1H, H-6), 2.93 (t, J = 11.1 Hz, 1H, H-1),
1.84-1.77 (m, 1H, H-3), 1.77-1.68 (m, 1H, H-2), 1.59-1.53 (m, 1H, H-4),
1.53 (s, 9H, tBu), 0.92-0.83 (m, 1H, H-3), 0.88 (d, J = 6.6 Hz, 3H, H-8),
0.76 (d, J = 6.6 Hz, 3H, H-9) ppm; 13C NMR (125 MHz, CDCl3, assigned
with the aid of HSQC) δ 197.95 (quat, C-7), 152.30 (quat, Boc carbonyl),
142.85, 132.26, 130.04 (quat, C-10), 117.46 (quat, C-13), 81.36 (quat, tBu),
80.12 (C-5), 74.64 (C-1), 42.54 (C-6), 41.77 (C-3), 35.95 (C-4), 31.48 (C-
2), 28.41 (tBu Me), 18.19 (C-8), 17.23 (C-9) ppm; FT-IR (film of a concd
solution in CH2Cl2) ν = 3333, 2955, 1732, 1672, 1603, 1528, 1410, 1318,
1231, 1157, 1096, 1053, 851 cm–1; ESI-MS m/z 348.2 ([M + H]+); ESI-
HRMS calcd for C20H30O4N ([M + H]+): 348.2169, found 348.2169.
MeOH). 1H NMR (500 MHz, CD3OD) 7.78 (d, J=8.8 Hz, 2H), 6.97 (d, J =
15.3 Hz, 1H), 6.77 (dd, J = 15.3, 8.3, Hz, 1H), 6.63 (d, J = 8.8 Hz, 2H),
2.50 (hept, J = 7.1 Hz, 1H), 2.42 (sext, J = 7.1 Hz, 1H), 1.82 (dt, J = 13.5,
7.7 Hz, 1H), 1.40 (dt, J = 13.6, 6.8 Hz, 1H), 1.14 (d, J = 6.9 Hz, 3H), 1.11
(d, J = 6.7 Hz, 3H) ppm; 13C NMR (150 MHz, CD3OD) δ 190.60, 181.86,
155.54, 153.30, 132.55, 127.10, 125.41, 114.39, 41.56, 39.63, 36.46, 20.30,
18.16 ppm; FT-IR (film of a concd solution in CH2Cl2) ν = 3473, 3357,
3231, 2967, 2928, 2870, 1706, 1610, 1589, 1361, 1286, 1176, 1132, 1018,
832 cm–1; ESI-MS m/z 262.2 ([M + H]+); ESI-HRMS calcd for C20H30O4N
([M + H]+): 262.1438, found 262.1439.
Supporting Information Copies of the 1H and 13C NMR spectra, FT-IR
spectra for all new compounds, comparison tables of NMR and optical
rotation data, comparison of 1H NMR (expansions) and IR spectra recored
on samples obtained under different chromatographic conditions.
Data for side product 25b (recorded on a pure analytical sample obtained
by further chromatoragphy, more polar than 25a): [α]D25 = –54.4 (c = 1.00,
CHCl3). 1H NMR (600 MHz, CDCl3) δ 7.91 (d, J = 8.7 Hz, 2H), 7.45 (d, J
= 8.6 Hz, 2H), 6.82 (s, 1H, NH), 4.46 (dt, J = 9.4, 4.8 Hz, 1H, H-5), 3.54
(ddd, J = 11.6, 4.6, 1.7 Hz, 1H, H-1), 3.29-3.21 (m, 2H, H-6 and H-1), 2.94
(dd, J = 15.1, 4.7 Hz, 1H, H-6), 2.12-2.04 (m, 1H, H-4), 1.79-1.71 (m, 1H,
H-2), 1.71-1.62 (m, 1H, H-3), 1.53 (s, 9H, tBu), 1.07 (dt, J = 13.3, 11.3 Hz,
1H, H-3), 0.88 (d, J = 7.0 Hz, 3H, H-8), 0.85 (d, J = 6.7 Hz, 3H, H-9) ppm;
13C NMR (125 MHz, CDCl3) δ 197.73 (quat, C-7), 152.30 (quat, Boc
carbonyl), 142.97, 131.80, 129.86 (quat, C-10), 117.59 (quat, C-13), 81.37
(quat, tBu), 74.00 (C-5), 67.45 (C-1), 35.83 (C-3), 35.18 (C-6), 33.62 (C-4),
31.13 (C-2), 28.40 (Boc Me), 17.85 (C-8), 17.78 (C-9) ppm; FT-IR (film of
a concd solution in CH2Cl2) ν = 3333, 2955, 1732, 1672, 1590, 1528, 1409,
1367, 1290, 1233, 1156, 1077, 1052 cm–1; ESI-MS m/z 348.3 ([M + H]+);
ESI-HRMS calcd for C20H30O4N ([M + H]+): 348.2169, found 348.2171.
Conversion of 24 into carboxylic acid 26. This was performed using the
same procedures described above for the “Conversion of 14 into carboxylic
acid 16 via aldehyde 18” except that 14 was replaced by 24. Data for 26 (a
colorless oil, 30 mg, 0.083 mmol, chromatography using 2:1 PE/EtOAc,
82% from the intermediate aldehyde 24’ or 80% over two steps from
alcohol 24): [α]D25 = +4.4 (c = 0.10, CHCl3). 1H NMR (500 MHz, CDCl3) δ
7.90 (d, J = 8.7 Hz, 2H), 7.46 (d, J = 8.3 Hz, 2H), 6.92-6.85 (m, 2H), 2.57-
2.45 (m, 2H), 1.94-1.87 (m, 1H), 1.53 (s, 9H), 1.51-1.43 (m, 1H), 1.21 (d, J
= 7.0 Hz, 3H), 1.15 (d, J = 6.7 Hz, 3H) ppm; 13C NMR (125 MHz, CDCl3)
δ 189.33, 181.98, 152.98, 142.85, 132.42, 130.24, 124.44, 117.69, 81.52,
39.70, 37.43, 35.28, 28.42, 20.04, 17.30 ppm; FT-IR (film of a concd
solution in CH2Cl2) ν = 3438, 3334, 2964, 2919, 1730, 1701, 1655, 1561,
1384, 1150, 1052, 902, 836, 770 cm–1; ESI-MS m/z 384.4 ([M + Na]+); ESI-
HRMS calcd for C20H27O5NNa ([M + Na]+): 384.1781, found 384.1779.
Removal of the Boc in 26 to afford (2R,4S)-1. This was performed using
the same procedures described above for the “Removal of the Boc in 16 to
afford (2R,4R)-1” except that 16 was replaced by 26.
Acknowledgments
This work was supported by the National Natural Science Foundation of
China (21532002, 21672244) and the Strategic Priority Research Program
of the Chinese Academy of Sciences (XDB20020200).
____________
[1]
S.-h. Guan, I. Sattler, W.-h. Lin, D.-a. Guo, S. Grabley, J. Nat. Prod.
2005, 68, 1198-1200.
[2]
a) J. Zieliński, H. Borowy-Borowski, J. Golik, J. Gumieniak, T.
Zimiński, P. Kołodziejczyk, J. Pawlak, Yu. Borowski, E. Shenin, A.
I. J. Filippova, Tetrahedron. Lett. 1979, 20, 1791-1794; b) T.
Bruzzese, M. Cambieri, F. Recusani, J. Pharm. Sci. 1975, 64, 462-
463.
[3]
[4]
T. Komori, Y. Morimoto, M. Niwa, Y. Hirata, Tetrahedron. Lett.
1989, 30, 3813-3816.
a) J. P. Cooksey, R. Ford, P. J. Kocieński, B. Pelotier, J.-M. Pons,
Tetrahedron 2010, 66, 6462-6467; b) J. Cossy, D. Bauer, V. Bellosta,
Tetrahedron 2002, 58, 5909-5992.
[5]
[6]
A. Millan, P. D. Grigol Martinez, V. K. Aggarwal, Chem. Eur. J.
2018, 24, 730-735.
a) D. A. Evans, J. Bartroli, T. L. Shih, J. Am. Chem. Soc. 1981, 103,
2127-2129; b) D. A. Evans, J. V. Nelson, E. Vogel, T. R. Taber, J.
Am. Chem. Soc. 1981, 103, 3099-3111; c) D. L. Clarkand, C. H.
Heathcock, J. Org. Chem. 1993, 58, 5878-5879.
[7]
a) F. Ding, M. L. Leow, J. Ma, R. William, H. Liao, X.-W. Liu.
Chem. Asian J. 2014, 9, 2548-2554; b) J. T. Lowe, J. S. Panek, Org.
Lett. 2008, 10, 3813-3816; cf. also synthesis of closely related 1,3-
dimethyl species, c) C. Drescher, M. Keller, O. Potterat, M.
Hamburger, R. Brückner, Org. Lett. 2020, 22, 2559-2563; d) U.
Dash, S. Sengupta, T. Sim, Eur. J. Org. Chem. 2015, 3963-3970; e) J.
Preindl, S. Schulthoff, C. Wirtz, J. Lingnau, A. Fürstner, Alois,
Angew. Chem. Int. Ed. 2017, 56, 7525-7530.
Submitted to the European Journal of Organic Chemistry
9
This article is protected by copyright. All rights reserved.