´
J.M. Mınguez et al. / Bioorg. Med. Chem. 11 (2003) 3335–3357
3349
J=11.4 Hz), 4.03 (t, 2H, J=6.5 Hz), 3.81 (s, 3H), 3.79
(s, 3H), 3.23 (dt, 1H, J=5.6, 5.6 Hz), 3.05 (dd, 1H,
J=7.5, 3.8 Hz), 2.79–2.67 (m, 2H), 2.65–2.55 (m, 1H),
2.15–2.01 (m, 1H), 2.03 (s, 3H), 1.99–1.79 (m, 3H),
1.73–1.56 (m, 5H), 1.02 (d, 3H, J=6.8 Hz), 1.00 (d, 3H,
J=6.7 Hz), 0.96 (d, 3H, J=6.9 Hz), 0.92 (d, 3H, J=6.8
Hz).
(m, 4H), 1.81–1.66 (m, 3H), 1.59–1.51 (m, 2H), 1.23 (s,
9H), 1.03 (d, 3H, J=6.8 Hz), 1.01 (d, 3H, J=6.8 Hz),
1.00 (d, 3H, J=6.9 Hz), 0.96 (d, 3H, J=6.9 Hz); 13C
NMR (75 MHz, CDCl3) 178.3, 157.3, 133.5, 133.4,
132.4, 132.1, 130.2, 130.0, 128.7, 118.0, 79.7, 79.0, 72.8,
63.8, 39.9, 38.7, 35.3, 34.9, 34.7, 34.5, 28.7, 27.2, 24.2,
24.1, 18.0, 17.6, 15.3, 7.9; MS (FAB in glycerol/NaCl,
m/z) 544 (M+Na)+, 443, 301, 245, 191; HRMS (FAB
in glycerol) calcd for C30H52NO6 (M+H)+ 522.3795,
found 522.3798; [a]2D0 +67.0 (c 0.27, CHCl3).
The esterabove obtained (3.0 mg, 4.1 mmol) was treated
with NaHCO3 and DDQ, according to the general
method. Flash chromatography of the crude residue
(CH2Cl2 to CH2Cl2/EtOAc 1:1) yielded 1.6 mg (82%) of
the acetyl analogue 39 as a colorless oil. 1H NMR
(300 MHz, CDCl3) 6.63 (ddd, 1H, J=16.8, 11.0, 10.1
Hz), 6.06 (dd, 1H, J=11.0, 11.0 Hz), 5.52–5.33 (m, 5H),
5.23 (d, 1H, J=16.8 Hz), 5.14 (d, 1H, J=10.1 Hz), 4.76
(dd, 1H, J=6.7, 4.5 Hz), 4.58 (bs, 2H), 4.10–4.05 (m,
2H), 3.69–3.62 (m, 1H), 3.24 (dd, 1H, J=5.8, 5.8 Hz),
3.06–2.97 (m, 1H), 2.70–2.58 (m, 2H), 2.20–2.03 (m,
4H), 2.06 (s, 3H), 1.78–1.64 (m, 3H), 1.57–1.48 (m, 2H),
1.01 (d, 3H, J=6.9 Hz), 1.00 (d, 3H, J=6.8 Hz), 0.99
(d, 3H, J=6.9 Hz), 0.94 (d, 3H, J=6.9 Hz); MS (FAB
in glycerol/NaCl, m/z) 502 (M+Na)+, 469, 301, 207;
[a]2D0 +73.7 (c 0.08, CHCl3).
Thiophene 2-carboxylic acid, (Z,Z,Z)-(6S,7S,8S,13R,
14S,15S,16S)-15-carbamoyloxy-7,13-dihydroxy-6,8,14,
16-tetramethyleicosa-4,9,17,19-tetraenyl ester (41). A
mixture of 7.0 mg (10 mmol) of the alcohol 37, pyridine
and 2-thiophene carbonyl chloride was stirred for 18 h.
Following the general procedure thiophene 2-carboxylic
acid, (Z,Z,Z)-(6S,7S,8S,13R,14S,15S,16S)-15-carba-
moyloxy-7,13-bis(4-methoxybenzyloxy)-6,8,14,16-tetra-
methyleicosa-4,9,17,19-tetraenyl ester was obtained.
1H NMR (300 MHz, CDCl3) 7.80 (d, 1H, J=3.9 Hz),
7.54 (dd, 1H, J=4.9, 0.8 Hz), 7.30–7.26 (m, 4H), 7.10
(dd, 1H, J=4.8, 3.9 Hz), 6.89 (d, 2H, J=8.5 Hz), 6.87
(d, 2H, J=8.5 Hz), 6.37 (ddd, 1H, J=18.0, 11.0, 10.1
Hz), 5.98 (dd, 1H, J=11.0, 11.0 Hz), 5.52 (dd, 1H,
J=11.0, 9.8 Hz), 5.41–5.24 (m, 4H), 5.18 (d, 1H,
J=18.0 Hz), 5.07 (d, 1H, J=10.1 Hz), 4.82 (dd, 1H,
J=5.9, 5.9 Hz), 4.58–4.49 (m, 5H), 4.35 (d, 1H, J=11.4
Hz), 4.27 (t, 2H, J=6.3 Hz), 3.81 (s, 3H), 3.80 (s, 3H),
3.24 (dt, 1H, J=5.5, 5.5 Hz), 3.06 (dd, 1H, J=7.5, 3.8
Hz), 2.82–2.70 (m, 2H), 2.64–2.55 (m, 1H), 2.25–2.15
(m, 1H), 2.08–1.90 (m, 2H), 1.89–1.57 (m, 6H), 1.02 (d,
3H, J=6.8 Hz), 1.01 (d, 3H, J=6.8 Hz), 0.96 (d, 3H,
J=6.9 Hz), 0.93 (d, 3H, J=6.9 Hz).
2,2-Dimethylpropionic acid, (Z,Z,Z)-(6S,7S,8S,13R,14S,
15S,16S)-15-carbamoyloxy-7,13-dihydroxy-6,8,14,16-tetra-
methyleicosa-4,9,17,19-tetraenyl ester (40). A mixture of
37 (4.0 mg, 5.9 mmol), pyridine and pivaloyl chloride
was stirred for 17 h following the general procedure, to
obtain the compound 2,2-dimethylpropionic acid,
(Z,Z,Z)-(6S,7S,8S,13R,14S,15S,16S)-15-carbamoyloxy-
7,13 - bis(4 - methoxybenzyloxy) - 6,8,14,16 - tetramethyl-
eicosa-4,9,17,19-tetraenyl ester.
1H NMR (300 MHz, CDCl3) 7.30–7.27 (m, 4H), 6.89 (d,
2H, J=8.6 Hz), 6.87 (d, 2H, J=8.6 Hz), 6.36 (ddd, 1H,
J=17.1, 11.0, 10.2 Hz), 5.98 (dd, 1H, J=11.0, 11.0 Hz),
5.50 (dd, 1H, J=11.0, 9.8 Hz), 5.39–5.24 (m, 4H), 5.17
(dd, 1H, J=17.1, 1.4 Hz), 5.07 (d, 1H, J=10.2 Hz), 4.81
(dd, 1H, J=5.9, 5.9 Hz), 4.56 (bs, 2H), 4.57–4.48 (m,
3H), 4.35 (d, 1H, J=11.4 Hz), 4.02 (t, 2H, J=6.5 Hz),
3.81 (s, 3H), 3.80 (s, 3H), 3.23 (dt, 1H, J=5.6, 5.6 Hz),
3.06 (dd, 1H, J=7.5, 3.8 Hz), 2.82–2.67 (m, 2H), 2.65–
2.54 (m, 1H), 2.20–2.04 (m, 1H), 2.02–1.77 (m, 4H),
1.72–1.54 (m, 4H), 1.20 (s, 9H), 1.02 (d, 3H, J=6.7 Hz),
1.01 (d, 3H, J=6.8 Hz), 0.96 (d, 3H, J=6.8 Hz), 0.92
(d, 3H, J=6.8 Hz).
The esterabove obtained (8.0 mg, 10.1 mmol) was trea-
ted with NaHCO3 and DDQ following the general pro-
tocol. Chromatography of the crude residue (CH2Cl2/
EtOAc 1:1) yielded 41 as a colorless oil (3.9 mg, 72%).
IR (thin film, NaCl) 3418, 2962, 2925, 1712, 1695, 1600,
1
1418, 1265, 1101 cmꢀ1; H NMR (300 MHz, CDCl3)
7.81 (dd, 1H, J=3.7, 1.2 Hz), 7.56 (dd, 1H, J=5.0, 1.2
Hz), 7.11 (dd, 1H, J=5.0, 3.7 Hz), 6.62 (ddd, 1H,
J=16.9, 11.0, 10.1 Hz), 6.05 (dd, 1H, J=11.0, 11.0 Hz),
5.55–5.47 (m, 1H), 5.42–5.31 (m, 4H), 5.22 (d, 1H,
J=16.9 Hz), 5.13 (d, 1H, J=10.1 Hz), 4.76 (dd, 1H,
J=6.7, 4.6 Hz), 4.58 (bs, 2H), 4.37–4.25 (m, 2H), 3.67–
3.62 (m, 1H), 3.23 (dd, 1H, J=5.7, 5.7 Hz), 3.05–2.95
(m, 1H), 2.69–2.61 (m, 2H), 2.30–2.05 (m, 3H), 1.88–
1.72 (m, 4H), 1.53–1.45 (m, 2H), 1.00 (d, 3H, J=7.0
Hz), 0.98 (d, 3H, J=7.0 Hz), 0.97 (d, 3H, J=6.8 Hz),
0.93 (d, 3H, J=7.0 Hz); MS (FAB in MNBA, m/z) 548
(M+H)+, 487, 391, 257, 227, 154, 136; HRMS (FAB in
MNBA) calcd forC 30H46NO6S (M+H)+ 548.3046,
found 548.3039; [a]2D0 +60.5 (c 0.185, CHCl3).
To 3.0 mg (3.9 mmol) of the esterabove obtained were
added NaHCO3 and DDQ. Chromatography of the
crude residue using CH2Cl2 to CH2Cl2/EtOAc 1:1
provided 1.9 mg (95%) of the analogue 40 as a yellow
oil.
IR (thin film, NaCl) 3437, 2916, 2846, 1713, 1653, 1457,
1162, 1045 cmꢀ1 1H NMR (300 MHz, CDCl3) 6.62
;
(ddd, 1H, J=16.8, 11.0, 10.1 Hz), 6.07 (dd, 1H, J=11.0,
11.0 Hz), 5.58–5.46 (m, 1H), 5.42–5.32 (m, 4H), 5.25 (d,
1H, J=16.8 Hz), 5.16 (d, 1H, J=10.1 Hz), 4.78 (dd, 1H,
J=6.7, 4.6 Hz), 4.60 (bs, 2H), 4.15–4.05 (m, 2H), 3.69–
3.64 (m, 1H), 3.25 (dd, 1H, J=5.7, 5.7 Hz), 3.02 (ddq,
1H, J=10.0, 6.8, 3.3 Hz), 2.71–2.58 (m, 2H), 2.23–2.04
Hydroxyacetic acid, (Z,Z,Z)-(6S,7S,8S,13R,14S,15S,16S)-
15-carbamoyloxy-7,13-dihydroxy-6,8,14,16-tetramethyl-
eicosa-4,9,17,19-tetraenyl ester (42). A mixture of 37
(7.0 mg, 10 mmol), (4-methoxybenzyloxy) acetic acid (20
mmol), EDCI (20 mmol) and DMAP (0.5 mmol) was
stirred at room temperature for 40 h. After chromato-