syntheses of discodermolide have been reported.3,7 Herein
we report our approach to the C1-C14 fragment 2, which
sets the stage for a convergent synthesis of (+)-discoder-
molide and its analogues for further structural and biological
study.
projected that the desired stereochemistry of the propagylic
alcohol 4 at C7 could be realized utilizing an acetate aldol
reaction between the boron enolate of methyl ketone 5 and
the propargylic aldehyde 6. Finally, the stereogenic centers
of the polypropinate fragments 5 and 6 could be constructed
using chiral (E)-crotylsilane bond construction methodology,
developed earlier in our laboratories.8
Our retrosynthetic analysis of (+)-discodermolide 1 is
outlined in Figure 1. The first key disconnection at C14-
Assembly of the methyl ketone 5 started with the double
stereodifferentiating crotylation between readily available9
aldehyde 7 and (S)-silane 8 (Scheme 1). Acidic workup
Scheme 1
removed the silyl protecting group in situ to afford homoal-
lylic alcohol 9 in 85% yield with dr > 30:1 anti:syn. The
resulting diol 9 was converted to the p-methoxybenzyl acetal
10 in 90% yield. Subsequent ozonolysis of the double bond
in the presence of pyridine provided C1-C6 fragment 5 in
95% yield.
Figure 1. Retrosynthetic analysis of (+)-discodermolide.
Synthesis of propargylic aldehyde 6 is outlined in Scheme
2 and was initiated by a double stereodifferentiating reaction
between aldehyde 11 and the (S)-crotylsilane reagent 12 to
give the homoallylic alcohol 13 (85%, dr > 30:1 syn:anti).
Protection of the homoallylic alcohol as the TBS ether (94%
yield), followed by the oxidative cleavage of the double bond,
and Corey-Fuchs10 homologation, afforded vinyl dibromide
15 in 84% yield (two steps). Treatment with n-BuLi and
TMSCl led to acetylene 16 in 79% yield. Hydrozirconation
of silylacetylene 16 using Schwartz’s reagent11 [Cp2Zr(H)-
Cl] (2.5 equiv, THF, 55 °C, 1 h), followed by quenching
with iodine affored iodovinylsilane 17 as a single isomer in
92% yield. Subsequent coupling of 17 with methylzinc
species in the presence of a catalytic amount of Pd(0) gave
the (Z)-vinyl silane 18 in 88% yield. Due to the inherent
stability, the vinylsilane functions as a masked vinyl iodide
throughout the synthesis until fragments 2 and 3 are ready
for the crucial palladium(0)-mediated cross-coupling reaction.
C15 envisions an sp2-sp3 type palladium(0)-mediated cross-
coupling reaction between C1-C14 vinyl iodide 2 and C15-
C24 alkyl iodide 3 fragments. Fragment 2 is derived from
propargylic alcohol 4 via Lindlar reduction of the C8-C9
internal acetylene and iododesilylation. Our second discon-
nection of 4 at C6-C7 yields two subunits 5 and 6. We
(6) For synthetic approaches to discodermolide, see: (a) Paterson, I.;
Wren, S. P. J. Chem. Soc., Chem. Commun. 1993, 1790-1792. (b) Clark,
D. L.; Heathcock, C. H. J. Org. Chem. 1993, 58, 5878-5879. (c) Golec, J.
M. C.; Jones, S. D. Tetrahedron Lett. 1993, 34, 8159-8162. (d) Evans, P.
L.; Golec, J. M. C.; Gillespie, R. J. Tetrahedron Lett. 1993, 34, 8163-
8166. (e) Golec, J. M. C.; Gillespie, R. J. Tetrahedron Lett. 1993, 34, 8167-
8168. (f) Yang, G.; Myles, D. C. Tetrahedron Lett. 1994, 35, 2503-2504.
(g) Yang, G.; Myles, D. C. Tetrahedron Lett. 1994, 35, 1313-1316. (h)
Paterson, I.; Schlapbach, A. Synlett 1995, 498-500. (i) Miyazawa, M.;
Oonuma, S.; Maruyama, K.; Miyashita, M. Chem Lett. 1997, 1191-1192.
(j) Miyazawa, M.; Oonuma, S.; Maruyama, K.; Miyashita, M. Chem Lett.
1997, 1193-1194. (k) Marshall, J. A.; Lu, Z. H.; Johns, B. A. J. Org. Chem.
1998, 63, 817-823. (l) Misske, A. M.; Hoffman, H. M. R. Tetrahedron
1999, 55, 4315-4324. (m) Evans, D. A.; Halstead, D. P.; Allison, B. D.
Tetrahedron 1999, 40, 4461-4462. (n) Filla, S. A.; Song, J. J.; Chen, L.
R.; Masamune, S. Tetrahedron Lett. 1999, 40, 5449-5453.
(7) (a) Smith, A. B., III; Qiu, Y.; Jones, D. R.; Kobayashi, K. J. Am.
Chem. Soc. 1995, 117, 12011-12012. (b) Smith, A. B., III; Kaufman, M.
D.; Beauchamp, T. J.; LaMarche, M. J.; Arimoto, H. Org. Lett. 1999, 1,
1823-1826. (c) Haried, S. S.; Yang, G.; Strawn, M. A.; Myles D. C. J.
Org. Chem. 1997, 62, 6098-6099. (d) Marshall, J. A.; Lu, Z.-H.; Johns,
B. A. J. Org. Chem. 1998, 63, 7885-7892. (e) Paterson, I.; Florence, G.
J.; Gerlach, K.; Scott, J. P. Angew. Chem., Int. Ed. 2000, 39, 2, 377-380.
(f) Paterson, I.; Florence, G. J.; Gerlach, K.; Scott, J. P.; Sereinig, N. J.
Am. Chem. Soc. 2001, 123, 9535-9544. (g) Halstead, D. P. Ph.D. Thesis,
Harvard University, Cambridge, MA, 1998.
(8) (a) Panek, J. S.; Yang, M.; Xu, F. J. Org. Chem. 1992, 57, 5790-
5792. (b) Masse, C. E.; Panek, J. S. Chem. ReV. 1995, 95, 1293-1316. (c)
Jain, N. F.; Takenaka, N.; Panek, J. S. J. Am. Chem. Soc. 1996, 118, 12475-
12476.
(9) Roush, W. R.; Palkowitz, A. D.; Ando, K. J. Am. Chem. Soc. 1990,
112, 6348-6359.
(10) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769-3772.
(11) (a) Hart, D. W.; Schwartz, J. J. Am. Chem. Soc. 1974, 96, 8115-
8116. (b) Buchwald, S. L.; La Maire, S. J.; Nielsen, R. B.; Watson, B. T.;
King, S. M. Tetrahedron Lett. 1987, 28, 3895-3898.
2398
Org. Lett., Vol. 4, No. 14, 2002